Skip to main content
Log in

Notch Signaling Regulates Microglial Activation and Inflammatory Reactions in a Rat Model of Temporal Lobe Epilepsy

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The inflammatory response mediated by microglia in the central nervous system is closely related to epilepsy. Notch signaling plays an important role in the microglial activation during hypoxia. This study aimed to investigate whether Notch signaling is involved in microglial activation and subsequent inflammation-related neuronal injury during the process of epileptogenesis in a rat model of temporal lobe epilepsy. By using western blotting, real-time quantitative PCR, immunohistochemistry and immunofluorescence labeling, we found that the expression of Notch signaling increased after status epilepticus and that a γ-secretase inhibitor could significantly inhibit the upregulation of Notch signaling, the activation of microglia, and the release of proinflammatory cytokines. Likewise, the neuronal apoptosis and loss in the hippocampus after SE were attenuated by the γ-secretase inhibitor. These results suggest that Notch signaling plays a key role in neuroinflammation and inflammation-related neuronal damage in epilepsy, and γ-secretase inhibitors may become a novel prospective therapeutic agent for epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sander JW (2003) The epidemiology of epilepsy revisited. Curr Opin Neurol 16(2):165–170. https://doi.org/10.1097/01.wco.0000063766.15877.8e

    Article  PubMed  Google Scholar 

  2. Henshall DC, Engel T (2013) Contribution of apoptosis-associated signaling pathways to epileptogenesis: lessons from Bcl-2 family knockouts. Front Cell Neurosci 7:110. https://doi.org/10.3389/fncel.2013.00110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Curia G, Longo D, Biagini G, Jones RS, Avoli M (2008) The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 172(2):143–157. https://doi.org/10.1016/j.jneumeth.2008.04.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Vezzani A, Granata T (2005) Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46(11):1724–1743. https://doi.org/10.1111/j.1528-1167.2005.00298.x

    Article  PubMed  CAS  Google Scholar 

  5. Dedeurwaerdere S, Friedman A, Fabene PF, Mazarati A, Murashima YL, Vezzani A, Baram TZ (2012) Finding a better drug for epilepsy: antiinflammatory targets. Epilepsia 53(7):1113–1118. https://doi.org/10.1111/j.1528-1167.2012.03520.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Vezzani A, Aronica E, Mazarati A, Pittman QJ (2013) Epilepsy and brain inflammation. Exp Neurol 244:11–21. https://doi.org/10.1016/j.expneurol.2011.09.033

    Article  PubMed  CAS  Google Scholar 

  7. Vezzani A, French J, Bartfai T, Baram TZ (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7(1):31–40. https://doi.org/10.1038/nrneurol.2010.178

    Article  PubMed  CAS  Google Scholar 

  8. Eyo UB, Peng J, Swiatkowski P, Mukherjee A, Bispo A, Wu LJ (2014) Neuronal hyperactivity recruits microglial processes via neuronal NMDA receptors and microglial P2Y12 receptors after status epilepticus. J Neurosci 34(32):10528–10540. https://doi.org/10.1523/jneurosci.0416-14.2014

    Article  PubMed  PubMed Central  Google Scholar 

  9. Benson MJ, Manzanero S, Borges K (2015) Complex alterations in microglial M1/M2 markers during the development of epilepsy in two mouse models. Epilepsia 56(6):895–905. https://doi.org/10.1111/epi.12960

    Article  PubMed  CAS  Google Scholar 

  10. De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F, De Luigi A, Garattini S, Vezzani A (2000) Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci 12(7):2623–2633

    Article  PubMed  Google Scholar 

  11. Vezzani A, Balosso S, Ravizza T (2008) The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun 22(6):797–803. https://doi.org/10.1016/j.bbi.2008.03.009

    Article  PubMed  CAS  Google Scholar 

  12. Breunig JJ, Silbereis J, Vaccarino FM, Sestan N, Rakic P (2007) Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc Natl Acad Sci USA 104(51):20558–20563. https://doi.org/10.1073/pnas.0710156104

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ables JL, Breunig JJ, Eisch AJ, Rakic P (2011) Not(ch) just development: Notch signalling in the adult brain. Nat Rev Neurosci 12(5):269–283. https://doi.org/10.1038/nrn3024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Sha L, Wu X, Yao Y, Wen B, Feng J, Sha Z, Wang X, Xing X, Dou W, Jin L, Li W, Wang N, Shen Y, Wang J, Wu L, Xu Q (2014) Notch signaling activation promotes seizure activity in temporal lobe epilepsy. Mol Neurobiol 49(2):633–644. https://doi.org/10.1007/s12035-013-8545-0

    Article  PubMed  CAS  Google Scholar 

  15. Yao L, Kan EM, Kaur C, Dheen ST, Hao A, Lu J, Ling EA (2013) Notch-1 signaling regulates microglia activation via NF-kappaB pathway after hypoxic exposure in vivo and in vitro. PLoS ONE 8(11):e78439. https://doi.org/10.1371/journal.pone.0078439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wei Z, Chigurupati S, Arumugam TV, Jo DG, Li H, Chan SL (2011) Notch activation enhances the microglia-mediated inflammatory response associated with focal cerebral ischemia. Stroke 42(9):2589–2594. https://doi.org/10.1161/strokeaha.111.614834

    Article  PubMed  CAS  Google Scholar 

  17. Cao Q, Lu J, Kaur C, Sivakumar V, Li F, Cheah PS, Dheen ST, Ling EA (2008) Expression of Notch-1 receptor and its ligands Jagged-1 and Delta-1 in amoeboid microglia in postnatal rat brain and murine BV-2 cells. Glia 56(11):1224–1237. https://doi.org/10.1002/glia.20692

    Article  PubMed  Google Scholar 

  18. Cao Q, Li P, Lu J, Dheen ST, Kaur C, Ling EA (2010) Nuclear factor-kappaB/p65 responds to changes in the Notch signaling pathway in murine BV-2 cells and in amoeboid microglia in postnatal rats treated with the gamma-secretase complex blocker DAPT. J Neurosci Res 88(12):2701–2714. https://doi.org/10.1002/jnr.22429

    Article  PubMed  CAS  Google Scholar 

  19. Lucchi C, Vinet J, Meletti S, Biagini G (2015) Ischemic-hypoxic mechanisms leading to hippocampal dysfunction as a consequence of status epilepticus. Epilepsy Behav 49:47–54. https://doi.org/10.1016/j.yebeh.2015.04.003

    Article  PubMed  Google Scholar 

  20. Racine RJ (1972) Modification of seizure activity by electrical stimulation. I. After-discharge threshold. Electroencephalogr Clin Neurophysiol 32(3):269–279

    Article  PubMed  CAS  Google Scholar 

  21. Cummins AG, Woenig JA, Donato RP, Proctor SJ, Howarth GS, Grover PK (2013) Notch signaling promotes intestinal crypt fission in the infant rat. Dig Dis Sci 58(3):678–685. https://doi.org/10.1007/s10620-012-2422-y

    Article  PubMed  Google Scholar 

  22. Eyo UB, Murugan M, Wu LJ (2017) Microglia-neuron communication in epilepsy. Glia 65(1):5–18. https://doi.org/10.1002/glia.23006

    Article  PubMed  Google Scholar 

  23. Salvesen GS (2002) Caspases: opening the boxes and interpreting the arrows. Cell Death Differ 9(1):3–5. https://doi.org/10.1038/sj.cdd.4400963

    Article  PubMed  CAS  Google Scholar 

  24. Christov A, Ottman JT, Grammas P (2004) Vascular inflammatory, oxidative and protease-based processes: implications for neuronal cell death in Alzheimer’s disease. Neurol Res 26(5):540–546. https://doi.org/10.1179/016164104225016218

    Article  PubMed  CAS  Google Scholar 

  25. Shinoda S, Skradski SL, Araki T, Schindler CK, Meller R, Lan JQ, Taki W, Simon RP, Henshall DC (2003) Formation of a tumour necrosis factor receptor 1 molecular scaffolding complex and activation of apoptosis signal-regulating kinase 1 during seizure-induced neuronal death. Eur J Neurosci 17(10):2065–2076

    Article  PubMed  Google Scholar 

  26. Vezzani A, Baram TZ (2007) New roles for interleukin-1 Beta in the mechanisms of epilepsy. Epilepsy Curr 7(2):45–50. https://doi.org/10.1111/j.1535-7511.2007.00165.x

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vezzani A, Conti M, De Luigi A, Ravizza T, Moneta D, Marchesi F, De Simoni MG (1999) Interleukin-1beta immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: functional evidence for enhancement of electrographic seizures. J Neurosci 19(12):5054–5065

    Article  PubMed  CAS  Google Scholar 

  28. Ravizza T, Gagliardi B, Noe F, Boer K, Aronica E, Vezzani A (2008) Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 29(1):142–160. https://doi.org/10.1016/j.nbd.2007.08.012

    Article  PubMed  CAS  Google Scholar 

  29. Samland H, Huitron-Resendiz S, Masliah E, Criado J, Henriksen SJ, Campbell IL (2003) Profound increase in sensitivity to glutamatergic-but not cholinergic agonist-induced seizures in transgenic mice with astrocyte production of IL-6. J Neurosci Res 73(2):176–187. https://doi.org/10.1002/jnr.10635

    Article  PubMed  CAS  Google Scholar 

  30. Tsao PN, Wei SC, Huang MT, Lee MC, Chou HC, Chen CY, Hsieh WS (2011) Lipopolysaccharide-induced Notch signaling activation through JNK-dependent pathway regulates inflammatory response. J Biomed Sci 18:56. https://doi.org/10.1186/1423-0127-18-56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Palaga T, Buranaruk C, Rengpipat S, Fauq AH, Golde TE, Kaufmann SH, Osborne BA (2008) Notch signaling is activated by TLR stimulation and regulates macrophage functions. Eur J Immunol 38(1):174–183. https://doi.org/10.1002/eji.200636999

    Article  PubMed  CAS  Google Scholar 

  32. Qu SY, Lin JJ, Zhang J, Song LQ, Yang XM, Wu CG (2017) Notch signaling pathway regulates the growth and the expression of inflammatory cytokines in mouse basophils. Cell Immunol 318:29–34. https://doi.org/10.1016/j.cellimm.2017.05.005

    Article  PubMed  CAS  Google Scholar 

  33. Aoyama T, Takeshita K, Kikuchi R, Yamamoto K, Cheng XW, Liao JK, Murohara T (2009) Gamma-secretase inhibitor reduces diet-induced atherosclerosis in apolipoprotein E-deficient mice. Biochem Biophys Res Commun 383(2):216–221. https://doi.org/10.1016/j.bbrc.2009.03.154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Arumugam TV, Chan SL, Jo DG, Yilmaz G, Tang SC, Cheng A, Gleichmann M, Okun E, Dixit VD, Chigurupati S, Mughal MR, Ouyang X, Miele L, Magnus T, Poosala S, Granger DN, Mattson MP (2006) Gamma secretase-mediated Notch signaling worsens brain damage and functional outcome in ischemic stroke. Nat Med 12(6):621–623. https://doi.org/10.1038/nm1403

    Article  PubMed  CAS  Google Scholar 

  35. Marignol L, Rivera-Figueroa K, Lynch T, Hollywood D (2013) Hypoxia, notch signalling, and prostate cancer. Nat Rev Urol 10(7):405–413. https://doi.org/10.1038/nrurol.2013.110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Li J, Jiang G, Chen Y, Chen L, Li Z, Wang Z, Wang X (2014) Altered expression of hypoxia-Inducible factor-1alpha participates in the epileptogenesis in animal models. Synapse (New York NY) 68(9):402–409. https://doi.org/10.1002/syn.21752

    Article  CAS  Google Scholar 

  37. Barnes PJ (1997) Nuclear factor-kappa B. Int J Biochem Cell Biol 29(6):867–870

    Article  PubMed  CAS  Google Scholar 

  38. Rivest S (2003) Molecular insights on the cerebral innate immune system. Brain Behav Immun 17(1):13–19

    Article  PubMed  CAS  Google Scholar 

  39. Cao Q, Kaur C, Wu CY, Lu J, Ling EA (2011) Nuclear factor-kappa beta regulates Notch signaling in production of proinflammatory cytokines and nitric oxide in murine BV-2 microglial cells. Neuroscience 192:140–154. https://doi.org/10.1016/j.neuroscience.2011.06.060

    Article  PubMed  CAS  Google Scholar 

  40. Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-kappaB signaling pathways. Nat Immunol 12(8):695–708. https://doi.org/10.1038/ni.2065

    Article  PubMed  CAS  Google Scholar 

  41. Zhou ZD, Kumari U, Xiao ZC, Tan EK (2010) Notch as a molecular switch in neural stem cells. IUBMB Life 62(8):618–623. https://doi.org/10.1002/iub.362

    Article  PubMed  CAS  Google Scholar 

  42. Lai EC (2004) Notch signaling: control of cell communication and cell fate. Development (Cambridge England) 131(5):965–973. https://doi.org/10.1242/dev.01074

    Article  CAS  Google Scholar 

  43. Bash J, Zong WX, Banga S, Rivera A, Ballard DW, Ron Y, Gelinas C (1999) Rel/NF-kappaB can trigger the Notch signaling pathway by inducing the expression of Jagged1, a ligand for Notch receptors. EMBO J 18(10):2803–2811. https://doi.org/10.1093/emboj/18.10.2803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yao L, Cao Q, Wu C, Kaur C, Hao A, Ling EA (2013) Notch signaling in the central nervous system with special reference to its expression in microglia. CNS Neurol Disord Drug Targets 12(6):807–814

    Article  PubMed  CAS  Google Scholar 

  45. Aronica E, Ravizza T, Zurolo E, Vezzani A (2012) Astrocyte immune responses in epilepsy. Glia 60(8):1258–1268. https://doi.org/10.1002/glia.22312

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81571734 and 81771819).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Li, Y., Yu, M. et al. Notch Signaling Regulates Microglial Activation and Inflammatory Reactions in a Rat Model of Temporal Lobe Epilepsy. Neurochem Res 43, 1269–1282 (2018). https://doi.org/10.1007/s11064-018-2544-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2544-5

Keywords

Navigation