Skip to main content
Log in

Yokukansan Reduces Cuprizone-Induced Demyelination in the Corpus Callosum Through Anti-inflammatory Effects on Microglia

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). The release of inflammatory cytokines and pro-oxidant molecules from microglia has been shown to play a key role in the pathology of MS. Thus, suppression of microglial cell activation is an attractive therapeutic option. Yokukansan, a traditional Japanese herbal medicine, has been shown to suppress microglial activity in the CNS. However, whether or not yokukansan reduces demyelination observed in the CNS during MS remains unknown. In this study, female C57BL/6 mice were fed a diet containing 0.2% cuprizone (bis-cyclohexanone oxaldihydrazone) to induce demyelination in the corpus callosum. We investigated whether or not yokukansan reduces cuprizone-induced demyelination using immunohistochemical analyses. Furthermore, we examined the in vitro anti-inflammatory effects of yokukansan on LPS-stimulated BV2 cells, a murine microglial cell line. Luxol fast blue staining and immunostaining for myelin basic protein demonstrated that yokukansan reduces demyelination of the corpora callosa of cuprizone-fed mice. In addition, yokukansan significantly decreased the number of activated microglial cells in the corpora callosa of cuprizone-fed mice. Furthermore, treatment with 500 μg/ml yokukansan suppressed the expression of interleukin-1β and inducible nitric-oxide synthase mRNA and protein in LPS-stimulated BV2 cells. These findings suggest that yokukansan reduces demyelination owing to anti-inflammatory effects on microglia. As yokukansan has few adverse effects, yokukansan has the potential to be a novel option to treat MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hafler DA (2004) Multiple sclerosis. J Clin Invest 113:788–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Grigoriadis N, van Pesch V (2015) A basic overview of multiple sclerosis immunopathology. Eur J Neurol 22:3–13

    Article  PubMed  Google Scholar 

  3. Hauser SL, Doolittle TH, Lincoln R, Brown RH, Dinarello CA (1990) Cytokine accumulations in CSF of multiple sclerosis patients: frequent detection of interleukin-1 and tumor necrosis factor but not interleukin-6. Neurology 40:1735–1739

    Article  CAS  PubMed  Google Scholar 

  4. Fischer MT, Sharma R, Lim JL, Haider L, Frischer JM, Drexhage J, Mahad D, Bradl M, van Horssen J, Lassmann H (2012) NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain 135:886–899

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brosnan CF, Cannella B, Battistini L, Raine CS (1995) Cytokine localization in multiple sclerosis lesions: correlation with adhesion molecule expression and reactive nitrogen species. Neurology 45:S16-21

    Article  PubMed  Google Scholar 

  6. Iwasaki K, Satoh-Nakagawa T, Maruyama M, Monma Y, Nemoto M, Tomita N, Tanji H, Fujiwara H, Seki T, Fujii M, Arai H, Sasaki H (2005) A randomized, observer-blind, controlled trial of the traditional Chinese medicine Yi-Gan San for improvement of behavioral and psychological symptoms and activities of daily living in dementia patients. J Clin Psychiatry 66:248–252

    Article  PubMed  Google Scholar 

  7. Monji A, Takita M, Samejima T, Takaishi T, Hashimoto K, Matsunaga H, Oda M, Sumida Y, Mizoguchi Y, Kato T, Horikawa H, Kanba S (2009) Effect of yokukansan on the behavioral and psychological symptoms of dementia in elderly patients with Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 33:308–311

    Article  CAS  PubMed  Google Scholar 

  8. Miyaoka T, Furuya M, Horiguchi J, Wake R, Hahioka S, Tohyma M, Mori N, Minabe Y, Iyo M, Ueno S, Ezoe S, Murotani K, Hoshino S, Seno H (2015) Efficacy and safety of yokukansan in treatment-resistant schizophrenia: a randomized, double-blind, placebo-controlled trial (a positive and negative syndrome scale, five-factor analysis). Psychopharmacology 232:155–164

    Article  CAS  PubMed  Google Scholar 

  9. Furukawa K, Tomita N, Uematsu D, Okahara K, Shimada H, Ikeda M, Matsui T, Kozaki K, Fujii M, Ogawa T, Umegaki H, Urakami K, Nomura H, Kobayashi N, Nakanishi A, Washimi Y, Yonezawa H, Takahashi S, Kubota M, Wakutani Y, Ito D, Sasaki T, Matsubara E, Une K, Ishiki A, Yahagi Y, Shoji M, Sato H, Terayama Y, Kuzuya M, Araki N, Kodama M, Yamaguchi T, Arai H (2017) Randomized double-blind placebo-controlled multicenter trial of Yokukansan for neuropsychiatric symptoms in Alzheimer’s disease. Geriatr Gerontol Int 17:211–218

    Article  PubMed  Google Scholar 

  10. Yu CH, Ishii R, Yu SC, Takeda M (2014) Yokukansan and its ingredients as possible treatment options for schizophrenia. Neuropsychiatr Dis Treat 10:1629–1634

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Su F, Bai F, Zhang Z (2016) Inflammatory cytokines and Alzheimer’s disease: a review from the perspective of genetic polymorphisms. Neurosci Bull 32:469–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, Jones T, Banati RB (2001) In-vivo measurement of activated microglia in dementia. Lancet 358:461–467

    Article  CAS  PubMed  Google Scholar 

  13. Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC (2009) Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 50:1801–1807

    Article  PubMed  Google Scholar 

  14. van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, Luurtsema G, Windhorst AD, Cahn W, Lammertsma AA, Kahn RS (2008) Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry 64:820–822

    Article  PubMed  Google Scholar 

  15. Ikarashi Y, Mizoguchi K (2016) Neuropharmacological efficacy of the traditional Japanese Kampo medicine yokukansan and its active ingredients. Pharmacol Ther 166:84–95

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y, Nakamura T, Toyoshima T, Lu F, Sumitani K, Shinomiya A, Keep RF, Yamamoto T, Tamiya T, Itano T (2014) Ameliorative effects of yokukansan on behavioral deficits in a gerbil model of global cerebral ischemia. Brain Res 16:300–307

    Article  Google Scholar 

  17. Furuya M, Miyaoka T, Tsumori T, Liaury K, Hashioka S, Wake R, Tsuchie K, Fukushima M, Ezoe S, Horiguchi J (2013) Yokukansan promotes hippocampal neurogenesis associated with the suppression of activated microglia in Gunn rat. J Neuroinflammation 10:145

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gudi V, Gingele S, Skripuletz T, Stangel M, Hermann D, Weissert R (2014) Glial response during cuprizone-induced de-and remyelination in the CNS: lessons learned. Front Cell Neurosci 8:1–24

    Article  Google Scholar 

  19. Matsushima GK, Morell P (2001) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11:107–116

    Article  CAS  PubMed  Google Scholar 

  20. McMahon EJ, Cook DN, Suzuki KM (2001) Absence of macrophage-inflammatory protein-1alpha delays central nervous system demyelination in the presence of an intact blood-brain barrier. J Immunol 167:2964–2971

    Article  CAS  PubMed  Google Scholar 

  21. Bakker DA, Ludwin SK (1987) Blood–brain barrier permeability during cuprizone-induced demyelination: implication for the patho-genesis of immune-mediated demyelinating diseases. J Neurol Sci 78:125–137

    Article  CAS  PubMed  Google Scholar 

  22. Mason JL, Suzuki K, Chaplin DD, Matsushima GK (2001) Interleukin-1beta promotes repair of the CNS. J Neurosci 21:7046–7052

    CAS  PubMed  Google Scholar 

  23. Arnett HA, Hellendall RP, Matsushima GK, Suzuki K, Laubach VE, Sherman P, Ting JP (2002) The protective role of nitric oxide in a neurotoxicant-induced demyelinating model. J Immunol 168:427–433

    Article  CAS  PubMed  Google Scholar 

  24. Makinodan M, Yamauchi T, Tatsumi K, Okuda H, Noriyama Y, Sadamatsu M, Kishimoto T, Wanaka A (2009) Yi-Gan San restores behavioral alterations and a decrease of brain glutathione level in a mouse model of schizophrenia. J Brain Dis 1:1–6

    PubMed  PubMed Central  Google Scholar 

  25. Tanaka T, Murakami K, Bando Y, Yoshida S (2015) Interferon regulatory factor 7 participates in the M1-like microglial polarization switch. Glia 63:595–610

    Article  PubMed  Google Scholar 

  26. Nomura T, Bando Y, Bochimoto H, Koga D, Watanabe T, Yoshida S (2013) Three-dimensional ultra-structures of myelin and the axons in the spinal cord: application of SEM with the osmium maceration method to the central nervous system in two mouse models. Neurosci Res 75:190–197

    Article  PubMed  Google Scholar 

  27. Bando Y, Nomura T, Bochimoto H, Murakami K, Tanaka T, Watanabe T, Yoshida S (2015) Abnormal morphology of myelin and axon pathology in murine models of multiple sclerosis. Neurochem Int 81:16–27

    Article  CAS  PubMed  Google Scholar 

  28. Blasi E, Barluzzi R, Bocchini V, Mazzolla R, Bistoni F (1990) Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol 27:229–237

    Article  CAS  PubMed  Google Scholar 

  29. Nakatani Y, Tsuji M, Amano T, Miyagawa K, Miyagishi H, Saito A, Imai T, Takeda K, Ishii D, Takeda H (2014) Neuroprotective effect of yokukansan against cytotoxicity induced by corticosterone on mouse hippocampal neurons. Phytomedicine 21:1458–1465

    Article  PubMed  Google Scholar 

  30. Kawakami Z, Kanno H, Ueki T, Terawaki K, Tabuchi M, Ikarashi Y, Kase Y (2009) Neuroprotective effects of yokukansan, a traditional Japanese medicine, on glutamate-mediated excitotoxicity in cultured cells. Neuroscience 159:1397–1407

    Article  CAS  PubMed  Google Scholar 

  31. Hiremath M, Saito Y, Knapp G, Ting J, Suzuki K, Matsushima G (1998) Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol 92:38–49

    Article  CAS  PubMed  Google Scholar 

  32. Clarner T, Janssen K, Nellessen L, Stangel M, Skripuletz T, Krauspe B, Hess FM, Denecke B, Beutner C, Linnartz-Gerlach B, Neumann H, Vallières L, Amor S, Ohl K, Tenbrock K, Beyer C, Kipp M (2015) CXCL10 triggers early microglial activation in the cuprizone model. J Immunol 194:3400–3413

    Article  CAS  PubMed  Google Scholar 

  33. Pasquini LA, Calatayud CA, Bertone Uña AL, Millet V, Pasquini JM, Soto EF (2007) The neurotoxic effect of cuprizone on oligodendrocytes depends on the presence of pro-inflammatory cytokines secreted by microglia. Neurochem Res 32:279–292

    Article  CAS  PubMed  Google Scholar 

  34. Morita S, Tatsumi K, Makinodan M, Okuda H, Kishimoto T, Wanaka A (2014) Geissoschizine methyl ether, an alkaloid from the uncaria hook, improves remyelination after cuprizone-induced demyelination in medial prefrontal cortex of adult mice. Neurochem Res 39:59–67

    Article  CAS  PubMed  Google Scholar 

  35. Masson JL, Jones JJ, Taniike M, Morell O, Suzuki K, Matsushima GK (2000) Mature oligodendrocyte apoptosis precedes IGF-1 production and oligodendrocyte progenitor accumulation and differentiation during demyelination/remyelination. J Neurosci Res 61:251–262

    Article  Google Scholar 

  36. Stansley B, Post J, Hensley K (2012) A comparative review of cell culture systems for the study of microglial biology in Alzheimer’s disease. J Neuroinflammation 9:115

    Article  PubMed  PubMed Central  Google Scholar 

  37. Henn A, Lund S, Hedtjärn M, Schrattenholz A, Pörzgen P, Leist M (2009) The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX 26:83–94

    Article  PubMed  Google Scholar 

  38. Yrjänheikki J, Keinänen R, Pellikka M, Hökfelt T, Koistinaho J (1998) Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA 95:15769–15774

    Article  PubMed  PubMed Central  Google Scholar 

  39. Skripuletz T, Miller E, Moharregh-Khiabani D, Blank A, Pul R, Gudi V, Trebst C, Stangel M (2010) Beneficial effects of minocycline on cuprizone induced cortical demyelination. Neurochem Res 35:1422–1433

    Article  CAS  PubMed  Google Scholar 

  40. Giulian D, Lachman LB (1985) Interleukin-1 stimulation of astroglial proliferation after brain injury. Science 228:497–499

    Article  CAS  PubMed  Google Scholar 

  41. Giulian D, Woodward J, Young DG, Krebs JF, Lachman LB (1988) Interleukin-1 injected into mammalian brain stimulates astrogliosis and neovascularization. J Neurosci 8:2485–2490

    CAS  PubMed  Google Scholar 

  42. Giulian D, Baker TJ, Shih LC, Lachman LB (1986) Interleukin 1 of the central nervous system is produced by ameboid microglia. J Exp Med 164:594–604

    Article  CAS  PubMed  Google Scholar 

  43. Imamura S, Tabuchi M, Kushida H, Nishi A, Kanno H, Yamaguchi T, Sekiguchi K, Ikarashi Y, Kase Y (2011) The blood-brain barrier permeability of geissoschizine methyl ether in Uncaria hook, a galenical constituent of the traditional Japanese medicine yokukansan. Cell Mol Neurobiol 31:787–793

    Article  CAS  PubMed  Google Scholar 

  44. Mizoguchi K, Kushida H, Kanno H, Igarashi Y, Nishimura H, Ikarashi Y, Kase Y (2014) Specific binding and characteristics of geissoschizine methyl ether, an indole alkaloid of Uncaria Hook, in the rat brain. J Ethnopharmacol 158:264–270

    Article  CAS  PubMed  Google Scholar 

  45. Han IO, Kim KW, Ryu JH, Kim WK (2002) p38 mitogen-activated protein kinase mediates lipopolysaccharide, not interferon-gamma, -induced inducible nitric oxide synthase expression in mouse BV2 microglial cells. Neurosci Lett 325:9–12

    Article  CAS  PubMed  Google Scholar 

  46. Lampron A, Larochelle A, Laflamme N, Préfontaine P, Plante MM, Sánchez MG, Yong VW, Stys PK, Tremblay MÈ, Rivest S (2015) Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J Exp Med 212:481–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Neumann H, Kotter MR, Franklin RJ (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132:288–295

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Yokukansan was provided by Tsumura Research Laboratory, Tsumura & Co., Ibaraki, Japan. We thank for Dr. Morita, Dr. Yamamoto, Ms. Akiyama, for technical assistance. This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number JP 16k07023 and grants from the Akiyama Memorial Foundation (Yoshio Bando). Hua You is supported by the National Natural Science Foundation of China (81670180, 81711540047, 81370077, and 81001220), and the Beijing Nova Program of the Beijing Municipal Science and Technology Commission (Z171100001117091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taichi Nomura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nomura, T., Bando, Y., You, H. et al. Yokukansan Reduces Cuprizone-Induced Demyelination in the Corpus Callosum Through Anti-inflammatory Effects on Microglia. Neurochem Res 42, 3525–3536 (2017). https://doi.org/10.1007/s11064-017-2400-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2400-z

Keywords

Navigation