Skip to main content

Advertisement

Log in

Looking Inside the Matrix: Perineuronal Nets in Plasticity, Maladaptive Plasticity and Neurological Disorders

  • Review Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The integrity of the central nervous system (CNS) matrix is crucial for its proper function. Loss of the lattice-like structure compromise synaptic stability and can lead to the disruption of the excitatory/inhibitory balance, astrocytosis, maladaptive plasticity and neuronal death. Perineuronal nets (PNNs) in the extracellular matrix (ECM) provide synaptic integration and control the functional wiring between neurons. These nets are significantly modified during CNS disorders, such as neurodegenerative, cerebrovascular and inflammatory diseases. The breakdown or the modification of PNNs could be due to the activity of matrix metalloproteinases (MMPs) or to the deposition of proteoglycans, glycoproteins, and hyaluronic acid. The expression and the activity of ECM-degrading enzymes can be regulated with tissue inhibitors of MMPs or via transcriptional and epigenetic silencing or enhancement (i.e. via histone deacetylases). The identification of molecules and mechanisms able to modify these processes will be essential for a new perspective on brain functioning in health and disease, leading to a target-directed approach with drugs directly interfering with the molecular mechanism underlying neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dityatev A, Rusakov DA (2011) Molecular signals of plasticity at the tetrapartite synapse. Curr Opin Neurobiol 21(2):353–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. De Luca C, Savarese L, Colangelo AM, Bianco MR, Cirillo G et al (2016) Astrocytes and microglia-mediated immune response in maladaptive plasticity is differently modulated by NGF in the ventral horn of the spinal cord following peripheral nerve injury. Cell Mol Neurobiol 36(1):37–46.

    Article  PubMed  Google Scholar 

  3. Dityatev A, Schachner M (2003) Extracellular matrix molecules and synaptic plasticity. Nat Rev Neurosci 4(6):456–468

    Article  CAS  PubMed  Google Scholar 

  4. Papa M, De Luca C, Petta F, Alberghina L, Cirillo G (2014) Astrocyte-neuron interplay in maladaptive plasticity. Neurosci Biobehav Rev 42:35–54

    Article  CAS  PubMed  Google Scholar 

  5. Galtrey CM, Kwok JC, Carulli D, Rhodes KE, Fawcett JW (2008) Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord. Eur J Neurosci 27(6):1373–1390

    Article  PubMed  Google Scholar 

  6. Wang D, Fawcett J (2012) The perineuronal net and the control of CNS plasticity. Cell Tissue Res 349(1):147–160

    Article  PubMed  Google Scholar 

  7. Yong VW, Power C, Forsyth P, Edwards DR (2001) Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2(7):502–511

    Article  CAS  PubMed  Google Scholar 

  8. Wang D, Ichiyama RM, Zhao R, Andrews MR, Fawcett JW (2011) Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury. J Neurosci 31(25):9332–9344

    Article  CAS  PubMed  Google Scholar 

  9. Gogolla N, Caroni P, Luthi A, Herry C (2009) Perineuronal nets protect fear memories from erasure. Science 325(5945):1258–1261

    Article  CAS  PubMed  Google Scholar 

  10. Cirillo G, Colangelo AM, Bianco MR, Cavaliere C, Zaccaro L et al (2012) BB14, a Nerve Growth Factor (NGF)-like peptide shown to be effective in reducing reactive astrogliosis and restoring synaptic homeostasis in a rat model of peripheral nerve injury. Biotechnol Adv 30(1):223–232

    Article  CAS  PubMed  Google Scholar 

  11. Soleman S, Filippov MA, Dityatev A, Fawcett JW (2013) Targeting the neural extracellular matrix in neurological disorders. Neuroscience 253:194–213

    Article  CAS  PubMed  Google Scholar 

  12. Pollock E, Everest M, Brown A, Poulter MO (2014) Metalloproteinase inhibition prevents inhibitory synapse reorganization and seizure genesis. Neurobiol Dis 70:21–31

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Q, Li J, Liu C, Song C, Li P et al (2015) Protective effects of low molecular weight chondroitin sulfate on amyloid beta (Aβ)-induced damage in vitro and in vivo. Neuroscience 305:169–182

    Article  CAS  PubMed  Google Scholar 

  14. Zinnhardt B, Viel T, Wachsmuth L, Vrachimis A, Wagner S et al (2015) Multimodal imaging reveals temporal and spatial microglia and matrix metalloproteinase activity after experimental stroke. J Cereb Blood Flow Metab 35:1711–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alpár A, Gärtner U, Härtig W, Brückner G (2006) Distribution of pyramidal cells associated with perineuronal nets in the neocortex of rat. Brain Res 1120(1):13–22

    Article  PubMed  Google Scholar 

  16. Corvetti L, Rossi F (2005) Degradation of chondroitin sulfate proteoglycans induces sprouting of intact purkinje axons in the cerebellum of the adult rat. J Neurosci 25(31):7150–7158

    Article  CAS  PubMed  Google Scholar 

  17. Frischknecht R, Heine M, Perrais D, Seidenbecher CI, Choquet D et al (2009) Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat Neurosci 12(7):897–904

    Article  CAS  PubMed  Google Scholar 

  18. Carulli D, Pizzorusso T, Kwok JCF, Putignano E, Poli A et al (2010) Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain 133(8):2331–2347

    Article  PubMed  Google Scholar 

  19. Golgi C (1893) Intorno all’origine del quarto nervo cerebrale e una questione isto-fisiologica che a questo argomento si collega. Rendiconti della Reale Accademia Dei Lincei 2:379–389

    Google Scholar 

  20. Liu H, Xu H, Yu T, Yao J, Zhao C et al (2013) Expression of perineuronal nets, parvalbumin and protein tyrosine phosphatase sigma in the rat visual cortex during development and after BFD. Curr Eye Res 38(10):1083–1094

    Article  CAS  PubMed  Google Scholar 

  21. Deepa SS, Carulli D, Galtrey C, Rhodes K, Fukuda J et al (2006) Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans. J Biol Chem 281(26):17789–17800

    Article  CAS  PubMed  Google Scholar 

  22. Carulli D, Rhodes KE, Brown DJ, Bonnert TP, Pollack SJ et al (2006) Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. J Comp Neurol 494(4):559–577

    Article  CAS  PubMed  Google Scholar 

  23. Rivera S, Khrestchatisky M, Kaczmarek L, Rosenberg G, Jaworski D (2010) Metzincin proteases and their inhibitors: Foes or friends in nervous system physiology? J Neurosci 30:15337–15357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Houghton AM, Hartzell WO, Robbins CS, Gomis-Ruth FX, Shapiro SD (2009) Macrophage elastase kills bacteria within murine macrophages. Nature 460(7255):637–641

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Prox J, Arnold P, Becker-Pauly C (2015) Meprin α and meprin β: procollagen proteinases in health and disease. Matrix Biol 44–46:7–13

    Article  PubMed  Google Scholar 

  26. Vadon-Le Goff S, Hulmes DJS, Moali C (2015) BMP-1/tolloid-like proteinases synchronize matrix assembly with growth factor activation to promote morphogenesis and tissue remodeling. Matrix Biol 44–46:14–23

    Article  PubMed  Google Scholar 

  27. Ortolano S, Spuch C (2013) tPA in the Central Nervous System: Relations Between tPA and Cell Surface LRPs. Recent Pat Endocr Metab Immune Drug Discov 7(1):65–76

    Article  CAS  PubMed  Google Scholar 

  28. Rosenberg GA (2002) Matrix metalloproteinases and neuroinflammation in multiple sclerosis. Neuroscientist 8(6):586–595

    Article  CAS  PubMed  Google Scholar 

  29. Vargova V, Pytliak M, Mechirova V (2012) Matrix metalloproteinases. EXS 103:1–33

    CAS  PubMed  Google Scholar 

  30. Murphy G (2011) Tissue inhibitors of metalloproteinases. Genome Biol 12(11):233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chaudhary AK, Pandya S, Ghosh K, Nadkarni A (2013) Matrix metalloproteinase and its drug targets therapy in solid and hematological malignancies: an overview. Mutat Res, Rev Mutat Res 753(1):7–23

    Article  CAS  Google Scholar 

  32. Berton A, Rigot V, Huet E, Decarme M, Eeckhout Y et al (2001) Involvement of fibronectin type II repeats in the efficient inhibition of gelatinases A and B by long-chain unsaturated fatty acids. J Biol Chem 276(23):20458–20465

    Article  CAS  PubMed  Google Scholar 

  33. Selvais C, D’Auria L, Tyteca D, Perrot G, Lemoine P et al (2011) Cell cholesterol modulates metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 (LRP-1) and clearance function. FASEB J 25(8):2770–2781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bovolenta P, Wandosell F, Nieto-Sampedro M (1993) Neurite outgrowth inhibitors associated with glial cells and glial cell lines. NeuroReport 5(3):345–348

    Article  CAS  PubMed  Google Scholar 

  35. Kwok JCF, Dick G, Wang D, Fawcett JW (2011) Extracellular matrix and perineuronal nets in CNS repair. Dev Neurobiol 71(11):1073–1089

    Article  CAS  PubMed  Google Scholar 

  36. Hill JJ, Jin K, Mao XO, Xie L, Greenberg DA (2012) Intracerebral chondroitinase ABC and heparan sulfate proteoglycan glypican improve outcome from chronic stroke in rats. Proc Natl Acad Sci 109(23):9155–9160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brown JM, Xia J, Zhuang B, Cho K-S, Rogers CJ et al (2012) A sulfated carbohydrate epitope inhibits axon regeneration after injury. Proc Natl Acad Sci 109(13):4768–4773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Souvenir R, Fathali N, Ostrowski RP, Lekic T, Zhang JH et al (2011) Tissue inhibitor of matrix metalloproteinase-1 mediates erythropoietin-induced neuroprotection in hypoxia ischemia. Neurobiol Dis 44(1):28–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu Y, Tian Y, Wei HJ, Chen J, Dong JF et al (2011) Erythropoietin increases circulating endothelial progenitor cells and reduces the formation and progression of cerebral aneurysm in rats. Neuroscience 181:292–299

    Article  CAS  PubMed  Google Scholar 

  40. Dong X, Song YN, Liu WG, Guo XL (2009) Mmp-9, a potential target for cerebral ischemic treatment. Curr Neuropharmacol 7(4):269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhan Y, Krafft PR, Lekic T, Ma Q, Souvenir R et al (2015) Imatinib preserves blood–brain barrier integrity following experimental subarachnoid hemorrhage in rats. J Neurosci Res 93(1):94–103

    Article  CAS  PubMed  Google Scholar 

  42. Romero JR, Vasan RS, Beiser AS, Au R, Benjamin EJ et al (2010) Association of matrix metalloproteinases with MRI indices of brain ischemia and aging. Neurobiol Aging 31(12):2128–2135

    Article  CAS  PubMed  Google Scholar 

  43. Yamada J, Jinno S (2013) Spatio-temporal differences in perineuronal net expression in the mouse hippocampus, with reference to parvalbumin. Neuroscience 253:368–379

    Article  CAS  PubMed  Google Scholar 

  44. Tanaka Y, Mizoguchi K (2009) Influence of aging on chondroitin sulfate proteoglycan expression and neural stem/progenitor cells in rat brain and improving effects of a herbal medicine, yokukansan. Neuroscience 164(3):1224–1234

    Article  CAS  PubMed  Google Scholar 

  45. Végh MJ, Rausell A, Loos M, Heldring CM, Jurkowski W et al (2014) Hippocampal extracellular matrix levels and stochasticity in synaptic protein expression increase with age and are associated with age-dependent cognitive decline. Mol Cell Proteom 13(11):2975–2985

    Article  Google Scholar 

  46. Suttkus A, Rohn S, Weigel S, Glockner P, Arendt T et al (2014) Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress. Cell Death Dis 5:e1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fawcett JW (2015) The extracellular matrix in plasticity and regeneration after CNS injury and neurodegenerative disease. Prog Brain Res 218:213–226

    Article  PubMed  Google Scholar 

  48. Endres K, Fahrenholz F (2012) Regulation of alpha-secretase ADAM10 expression and activity. Exp Brain Res 217(3–4):343–352

    Article  CAS  PubMed  Google Scholar 

  49. Siller SS, Broadie K (2012) Matrix metalloproteinases and minocycline: therapeutic avenues for fragile X syndrome. Neural Plast 2012:9

    Google Scholar 

  50. Saftig P, Reiss K (2011) The “A Disintegrin And Metalloproteases” ADAM10 and ADAM17: Novel drug targets with therapeutic potential? Eur J Cell Biol 90(6–7):527–535

    Article  CAS  PubMed  Google Scholar 

  51. Cui H, Freeman C, Jacobson GA, Small DH (2013) Proteoglycans in the central nervous system: role in development, neural repair, and Alzheimer’s disease. IUBMB Life 65(2):108–120

    Article  CAS  PubMed  Google Scholar 

  52. Walzer M, Lorens S, Hejna M, Fareed J, Hanin I et al (2002) Low molecular weight glycosaminoglycan blockade of β-amyloid induced neuropathology. Eur J Pharmacol 445(3):211–220

    Article  CAS  PubMed  Google Scholar 

  53. Timmer NM, van Dijk L, van der Zee CE, Kiliaan A, de Waal RM, Verbeek MM (2010) Enoxaparin treatment administered at both early and late stages of amyloid β deposition improves cognition of APPswe/PS1dE9 mice with differential effects on brain Aβ levels. Neurobiol Dis 40(1):340–347

    Article  CAS  PubMed  Google Scholar 

  54. Holmes BB, DeVos SL, Kfoury N, Li M, Jacks R et al (2013) Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc Natl Acad Sci 110(33):E3138–E3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang X, Wang B, O’Callaghan P, Hjertström E, Jia J et al (2012) Heparanase overexpression impairs inflammatory response and macrophage-mediated clearance of amyloid-β in murine brain. Acta Neuropathol 124(4):465–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McRae PA, Porter BE (2012) The perineuronal net component of the extracellular matrix in plasticity and epilepsy. Neurochem Int 61(7):963–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wilczynski GM, Konopacki FA, Wilczek E, Lasiecka Z, Gorlewicz A et al (2008) Important role of matrix metalloproteinase 9 in epileptogenesis. J Cell Biol 180(5):1021–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14(1):7–23

    Article  CAS  PubMed  Google Scholar 

  59. Mizoguchi H, Yamada K, Nabeshima T (2011) Matrix metalloproteinases contribute to neuronal dysfunction in animal models of drug dependence, Alzheimer’s disease, and epilepsy. Biochem Res Int 2011:681385

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nagappan G, Zaitsev E, Senatorov VV, Yang J, Hempstead BL et al (2009) Control of extracellular cleavage of ProBDNF by high frequency neuronal activity. Proc Natl Acad Sci 106(4):1267–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Maggio N, Cavaliere C, Papa M, Blatt I, Chapman J et al (2013) Thrombin regulation of synaptic transmission: implications for seizure onset. Neurobiol Dis 50:171–178

    Article  CAS  PubMed  Google Scholar 

  62. Van den Oever MC, Lubbers BR, Goriounova NA, Li KW, Van der Schors RC et al (2010) Extracellular matrix plasticity and GABAergic inhibition of prefrontal cortex pyramidal cells facilitates relapse to heroin seeking. Neuropsychopharmacology 35(10):2120–2133

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nagai T, Yamada K, Yoshimura M, Ishikawa K, Miyamoto Y et al (2004) The tissue plasminogen activator-plasmin system participates in the rewarding effect of morphine by regulating dopamine release. Proc Natl Acad Sci USA 101(10):3650–3655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nakamoto K, Kawasaki S, Kobori T, Fujita-Hamabe W, Mizoguchi H et al (2012) Involvement of matrix metalloproteinase-9 in the development of morphine tolerance. Eur J Pharmacol 683(1–3):86–92

    Article  CAS  PubMed  Google Scholar 

  65. Bahi A, Dreyer JL (2008) Overexpression of plasminogen activators in the nucleus accumbens enhances cocaine-, amphetamine- and morphine-induced reward and behavioral sensitization. Genes Brain Behav 7(2):244–256

    Article  CAS  PubMed  Google Scholar 

  66. Bahi A, Dreyer J-L (2012) Involvement of tissue plasminogen activator “tPA” in ethanol-induced locomotor sensitization and conditioned-place preference. Behav Brain Res 226(1):250–258

    Article  CAS  PubMed  Google Scholar 

  67. Mizoguchi H, Yamada K, Niwa M, Mouri A, Mizuno T et al (2007) Reduction of methamphetamine-induced sensitization and reward in matrix metalloproteinase-2 and -9-deficient mice. J Neurochem 100(6):1579–1588

    CAS  PubMed  Google Scholar 

  68. Mauney SA, Athanas KM, Pantazopoulos H, Shaskan N, Passeri E et al (2013) Developmental pattern of perineuronal nets in the human prefrontal cortex and their deficit in schizophrenia. Biol Psychiatry 74(6):427–435

    Article  PubMed  PubMed Central  Google Scholar 

  69. Shah A, Lodge DJ (2013) A loss of hippocampal perineuronal nets produces deficits in dopamine system function: relevance to the positive symptoms of schizophrenia. Transl Psychiatry 3:e215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Morawski M, Dityatev A, Hartlage-Rübsamen M, Blosa M, Holzer M et al (2014) Tenascin-R promotes assembly of the extracellular matrix of perineuronal nets via clustering of aggrecan. Philos Trans R Soc Lond B Biol Sci 369(1654):20140046

    Article  PubMed  PubMed Central  Google Scholar 

  71. Takamatsu A, Ohkawara B, Ito M, Masuda A, Sakai T et al (2014) Verapamil protects against cartilage degradation in osteoarthritis by inhibiting Wnt/β-catenin signaling. PLoS ONE 9(3):e92699

    Article  PubMed  PubMed Central  Google Scholar 

  72. Moore CS, Crocker SJ (2012) An alternate perspective on the roles of TIMPs and MMPs in pathology. Am J Pathol 180(1):12–16

    Article  CAS  PubMed  Google Scholar 

  73. Ulrich R, Baumgärtner W, Gerhauser I, Seeliger F, Haist V et al (2006) MMP-12, MMP-3, and TIMP-1 are markedly upregulated in chronic demyelinating theiler murine encephalomyelitis. J Neuropathol Exp Neurol 65(8):783–793

    Article  CAS  PubMed  Google Scholar 

  74. Gur-Wahnon D, Mizrachi T, Maaravi-Pinto F-Y, Lourbopoulos A, Grigoriadis N et al (2013) The plasminogen activator system: involvement in central nervous system inflammation and a potential site for therapeutic intervention. J Neuroinflamm 10(1):124

    Article  Google Scholar 

  75. Candelario-Jalil E, Yang Y, Rosenberg GA (2009) Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience 158(3):983–994

    Article  CAS  PubMed  Google Scholar 

  76. Verslegers M, Lemmens K, Van Hove I, Moons L (2013) Matrix metalloproteinase-2 and -9 as promising benefactors in development, plasticity and repair of the nervous system. Prog Neurobiol 105:60–78

    Article  CAS  PubMed  Google Scholar 

  77. Thorne M, Moore CS, Robertson GS (2009) Lack of TIMP-1 increases severity of experimental autoimmune encephalomyelitis: EFFECTS of darbepoetin alfa on TIMP-1 null and wild-type mice. J Neuroimmunol 211(1):92–100

    Article  CAS  PubMed  Google Scholar 

  78. Feng S, Cen J, Huang Y, Shen H, Yao L et al (2011) Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. PLoS ONE 6(8):e20599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bourboulia D, Stetler-Stevenson WG (2010) Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): positive and negative regulators in tumor cell adhesion. Semin Cancer Biol 20(3):161–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Iyer RP, Patterson NL, Fields GB, Lindsey ML (2012) The history of matrix metalloproteinases: milestones, myths, and misperceptions. Am J Physiol Heart Circ Physiol 303(8):H919–H930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stanton H, Melrose J, Little CB (1812) Fosang AJ (2011) Proteoglycan degradation by the ADAMTS family of proteinases. Biochimica et Biophysica Acta (BBA) Mol Basis Dis 12:1616–1629

    Google Scholar 

  82. Levičar N, Nutall RK, Lah TT (2003) Proteases in brain tumour progression. Acta Neurochir 145(9):825–838

    Article  PubMed  Google Scholar 

  83. Rahmah N, Sakai K, Sano K, Hongo K (2012) Expression of RECK in endothelial cells of glioma: comparison with CD34 and VEGF expressions. J Neuro Oncol 107(3):559–564

    Article  CAS  Google Scholar 

  84. Jayanth P, Amith SR, Gee K, Szewczuk MR (2010) Neu1 sialidase and matrix metalloproteinase-9 cross-talk is essential for neurotrophin activation of Trk receptors and cellular signaling. Cell Signal 22(8):1193–1205

    Article  CAS  PubMed  Google Scholar 

  85. Blanco-Mezquita T, Martinez-Garcia C, Proenca R, Zieske JD, Bonini S et al (2013) Nerve growth factor promotes corneal epithelial migration by enhancing expression of matrix metalloprotease-9. Invest Ophthalmol Vis Sci 54(6):3880–3890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bruno MA, Cuello AC (2006) Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade. Proc Natl Acad Sci USA 103(17):6735–6740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Romi F, Helgeland G, Gilhus NE (2012) Serum levels of matrix metalloproteinases: implications in clinical neurology. Eur Neurol 67(2):121–128

    Article  CAS  PubMed  Google Scholar 

  88. Casha S, Zygun D, McGowan MD, Bains I, Yong VW et al (2012) Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain 135(Pt 4):1224–1236

    Article  PubMed  Google Scholar 

  89. Tian L, Prabhakaran MP, Ramakrishna S (2015) Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules. Regen Biomater 2(1):31–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Papa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Luca, C., Papa, M. Looking Inside the Matrix: Perineuronal Nets in Plasticity, Maladaptive Plasticity and Neurological Disorders. Neurochem Res 41, 1507–1515 (2016). https://doi.org/10.1007/s11064-016-1876-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1876-2

Keywords

Navigation