Skip to main content
Log in

Critical Evaluation of the Changes in Glutamine Synthetase Activity in Models of Cerebral Stroke

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The following article addresses some seemingly paradoxical observations concerning cerebral glutamine synthetase in ischemia–reperfusion injury. In the brain, this enzyme is predominantly found in astrocytes and catalyzes part of the glutamine-glutamate cycle. Glutamine synthetase is also thought to be especially sensitive to inactivation by the oxygen- and nitrogen-centered radicals generated during strokes. Despite this apparent sensitivity, glutamine synthetase specific activity is elevated in the affected tissues during reperfusion. Given the central role of the glutamine-glutamate cycle in the brain, we sought to resolve these conflicting observations with the view of providing an alternative perspective for therapeutic intervention in stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Under normal intracellular physiological conditions (pH 7.2–7.4) ammonia exists predominantly (~99 %) as the conjugate acid, ammonium (NH4 +). Even so, the term ammonia is used throughout the text to indicate the sum of NH3 plus NH4 + for the sake of convenience.

  2. Görg et al. [39] refers to this residue as Tyr335.

Abbreviations

EPR:

Electron paramagnetic resonance

GABA:

γ-Aminobutyrate

MSO:

l-Methionine-S,R-sulfoximine

References

  1. Wang Y, Kudoh J, Kubota R, Asakawa S, Minoshima S, Shimizu N (1996) Chromosomal mapping of a family of human glutamine synthetase genes: functional gene (GLUL) on 1q25, pseudogene (GLULP) on 9p13, and three related genes (GLULL1, GLULL2, GLULL3) on 5q33, 11p15, and 11q24. Genomics 37(2):195–199. doi:10.1006/geno.1996.0542

    Article  CAS  PubMed  Google Scholar 

  2. Norenberg MD (1979) Distribution of glutamine synthetase in the rat central nervous system. J Histochem Cytochem 27(3):756–762

    Article  CAS  PubMed  Google Scholar 

  3. Bernstein HG, Bannier J, Meyer-Lotz G, Steiner J, Keilhoff G, Dobrowolny H, Walter M, Bogerts B (2014) Distribution of immunoreactive glutamine synthetase in the adult human and mouse brain. Qualitative and quantitative observations with special emphasis on extra-astroglial protein localization. J Chem Neuroanat 61-62C:33–50. doi:10.1016/j.jchemneu.2014.07.003

  4. Boksha IS, Schonfeld HJ, Langen H, Muller F, Tereshkina EB, Burbaeva G (2002) Glutamine synthetase isolated from human brain: octameric structure and homology of partial primary structure with human liver glutamine synthetase. Biochemistry (Mosc) 67(9):1012–1020

    Article  CAS  Google Scholar 

  5. Boksha IS, Tereshkina EB, Burbaeva GS (2000) Glutamine synthetase and glutamine synthetase-like protein from human brain: purification and comparative characterization. J Neurochem 75(6):2574–2582

  6. Shin D, Park C (2004) N-terminal extension of canine glutamine synthetase created by splicing alters its enzymatic property. J Biol Chem 279(2):1184–1190. doi:10.1074/jbc.M309940200

    Article  CAS  PubMed  Google Scholar 

  7. Shin D, Park S, Park C (2003) A splice variant acquiring an extra transcript leader region decreases the translation of glutamine synthetase gene. Biochem J 374(Pt 1):175–184. doi:10.1042/BJ20030132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Krajewski WW, Collins R, Holmberg-Schiavone L, Jones TA, Karlberg T, Mowbray SL (2008) Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design. J Mol Biol 375(1):217–228. doi:10.1016/j.jmb.2007.10.029

    Article  CAS  PubMed  Google Scholar 

  9. Eisenberg D, Gill HS, Pfluegl GM, Rotstein SH (2000) Structure-function relationships of glutamine synthetases. Biochim Biophys Acta 1477(1–2):122–145

    Article  CAS  PubMed  Google Scholar 

  10. Krajewski WW, Jones TA, Mowbray SL (2005) Structure of Mycobacterium tuberculosis glutamine synthetase in complex with a transition-state mimic provides functional insights. Proc Natl Acad Sci USA 102(30):10499–10504. doi:10.1073/pnas.0502248102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. He YX, Gui L, Liu YZ, Du Y, Zhou Y, Li P, Zhou CZ (2009) Crystal structure of Saccharomyces cerevisiae glutamine synthetase Gln1 suggests a nanotube-like supramolecular assembly. Proteins 76(1):249–254. doi:10.1002/prot.22403

    Article  CAS  PubMed  Google Scholar 

  12. Yanchunas J Jr, Dabrowski MJ, Schurke P, Atkins WM (1994) Supramolecular self-assembly of Escherichia coli glutamine synthetase: characterization of dodecamer stacking and high order association. Biochemistry 33(50):14949–14956

    Article  CAS  PubMed  Google Scholar 

  13. Schurke P, Freeman JC, Dabrowski MJ, Atkins WM (1999) Metal-dependent self-assembly of protein tubes from Escherichia coli glutamine synthetase. Cu(2+) EPR studies of the ligation and stoichiometry of intermolecular metal binding sites. J Biol Chem 274(39):27963–27968

    Article  CAS  PubMed  Google Scholar 

  14. Llorca O, Betti M, Gonzalez JM, Valencia A, Marquez AJ, Valpuesta JM (2006) The three-dimensional structure of an eukaryotic glutamine synthetase: functional implications of its oligomeric structure. J Struct Biol 156(3):469–479. doi:10.1016/j.jsb.2006.06.003

    Article  CAS  PubMed  Google Scholar 

  15. Jeitner TM, Cooper AJ (2013) Inhibition of human glutamine synthetase by l-methionine-S, R-sulfoximine-relevance to the treatment of neurological diseases. Metab Brain Dis 29:983–989. doi:10.1007/s11011-013-9439-6

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Furia TE (1972) Sequestrants in Foods. In: Furia TE (ed) CRC handbook of food additive, 2nd edn. Chemical Rubber Company, Cleveland, OH, pp 271–319

    Google Scholar 

  17. Admiraal SJ, Herschlag D (1995) Mapping the transition state for ATP hydrolysis: implications for enzymatic catalysis. Chem Biol 2(11):729–739

    Article  CAS  PubMed  Google Scholar 

  18. Jeitner TM, Muma NA, Battaile KP, Cooper AJL (2009) Transglutaminase activation in neurodegenerative diseases. Future Neurol 4(4):449–467. doi:10.2217/fnl.09.17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Andreotti AH (2003) Native state proline isomerization: an intrinsic molecular switch. Biochemistry 42(32):9515–9524. doi:10.1021/bi0350710

    Article  CAS  PubMed  Google Scholar 

  20. Gill HS, Eisenberg D (2001) The crystal structure of phosphinothricin in the active site of glutamine synthetase illuminates the mechanism of enzymatic inhibition. Biochemistry 40(7):1903–1912

    Article  CAS  PubMed  Google Scholar 

  21. Fridovich I (1995) Superoxide radical and superoxide dismutases. Ann Rev Biochem 64:97–112. doi:10.1146/annurev.bi.64.070195.000525

    Article  CAS  PubMed  Google Scholar 

  22. Ferrer-Sueta G, Radi R (2009) Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol 4(3):161–177. doi:10.1021/cb800279q

    Article  CAS  PubMed  Google Scholar 

  23. Goldstein S, Merenyi G (2008) The chemistry of peroxynitrite: implications for biological activity. Methods Enzymol 436:49–61. doi:10.1016/S0076-6879(08)36004-2

    Article  CAS  PubMed  Google Scholar 

  24. Lymar SV, Hurst JK (1995) Rapid reaction between peroxynitrite ion and carbon dioxide: implications for biological activity. J Am Chem Soc 117:8867–8868

    Article  CAS  Google Scholar 

  25. Denicola A, Freeman BA, Trujillo M, Radi R (1996) Peroxynitrite reaction with carbon dioxide/bicarbonate: kinetics and influence on peroxynitrite-mediated oxidations. Arch Biochem Biophys 333(1):49–58. doi:10.1006/abbi.1996.0363

    Article  CAS  PubMed  Google Scholar 

  26. Radi R (2013) Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. Acc Chem Res 46(2):550–559. doi:10.1021/ar300234c

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Quijano C, Hernandez-Saavedra D, Castro L, McCord JM, Freeman BA, Radi R (2001) Reaction of peroxynitrite with Mn-superoxide dismutase. Role of the metal center in decomposition kinetics and nitration. J Biol Chem 276(15):11631–11638. doi:10.1074/jbc.M009429200

    Article  CAS  PubMed  Google Scholar 

  28. Yamakura F, Taka H, Fujimura T, Murayama K (1998) Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem 273(23):14085–14089

    Article  CAS  PubMed  Google Scholar 

  29. Moreno DM, Marti MA, De Biase PM, Estrin DA, Demicheli V, Radi R, Boechi L (2011) Exploring the molecular basis of human manganese superoxide dismutase inactivation mediated by tyrosine 34 nitration. Arch Biochem Biophys 507(2):304–309. doi:10.1016/j.abb.2010.12.011

    Article  CAS  PubMed  Google Scholar 

  30. Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA 101(12):4003–4008. doi:10.1073/pnas.0307446101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. McBean GJ, Doorty KB, Tipton KF, Kollegger H (1995) Alteration in the glial cell metabolism of glutamate by kainate and N-methyl-D-aspartate. Toxicon 33(4):569–576

    Article  CAS  PubMed  Google Scholar 

  32. Minana MD, Kosenko E, Marcaida G, Hermenegildo C, Montoliu C, Grisolia S, Felipo V (1997) Modulation of glutamine synthesis in cultured astrocytes by nitric oxide. Cell Mol Neurobiol 17(4):433–445

    Article  CAS  PubMed  Google Scholar 

  33. Schliess F, Gorg B, Fischer R, Desjardins P, Bidmon HJ, Herrmann A, Butterworth RF, Zilles K, Haussinger D (2002) Ammonia induces MK-801-sensitive nitration and phosphorylation of protein tyrosine residues in rat astrocytes. FASEB J 16(7):739–741. doi:10.1096/fj.01-0862fje

    CAS  PubMed  Google Scholar 

  34. Gorg B, Foster N, Reinehr R, Bidmon HJ, Hongen A, Haussinger D, Schliess F (2003) Benzodiazepine-induced protein tyrosine nitration in rat astrocytes. Hepatology 37(2):334–342. doi:10.1053/jhep.2003.50061

    Article  CAS  PubMed  Google Scholar 

  35. Kosenko E, Llansola M, Montoliu C, Monfort P, Rodrigo R, Hernandez-Viadel M, Erceg S, Sanchez-Perez AM, Felipo V (2003) Glutamine synthetase activity and glutamine content in brain: modulation by NMDA receptors and nitric oxide. Neurochem Int 43(4–5):493–499

    Article  CAS  PubMed  Google Scholar 

  36. Gorg B, Wettstein M, Metzger S, Schliess F, Haussinger D (2005) Lipopolysaccharide-induced tyrosine nitration and inactivation of hepatic glutamine synthetase in the rat. Hepatology 41(5):1065–1073. doi:10.1002/hep.20662

    Article  PubMed  CAS  Google Scholar 

  37. Gorg B, Wettstein M, Metzger S, Schliess F, Haussinger D (2005) LPS-induced tyrosine nitration of hepatic glutamine synthetase. Hepatology 42(2):499. doi:10.1002/hep.20820

    Article  PubMed  Google Scholar 

  38. Fernandez-Cancio M, Fernandez-Vitos EM, Imperial S, Centelles JJ (2001) Structural requirements of benzodiazepines for the inhibition of pig brain nitric oxide synthase. Brain Res Mol Brain Res 96(1–2):87–93

    Article  CAS  PubMed  Google Scholar 

  39. Gorg B, Qvartskhava N, Voss P, Grune T, Haussinger D, Schliess F (2007) Reversible inhibition of mammalian glutamine synthetase by tyrosine nitration. FEBS Lett 581(1):84–90. doi:10.1016/j.febslet.2006.11.081

    Article  PubMed  CAS  Google Scholar 

  40. Buchczyk DP, Grune T, Sies H, Klotz LO (2003) Modifications of glyceraldehyde-3-phosphate dehydrogenase induced by increasing concentrations of peroxynitrite: early recognition by 20S proteasome. Biol Chem 384(2):237–241. doi:10.1515/BC.2003.026

    Article  CAS  PubMed  Google Scholar 

  41. Hwang NR, Yim SH, Kim YM, Jeong J, Song EJ, Lee Y, Lee JH, Choi S, Lee KJ (2009) Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions. Biochem J 423(2):253–264. doi:10.1042/BJ20090854

    Article  CAS  PubMed  Google Scholar 

  42. Kamisaki Y, Wada K, Bian K, Balabanli B, Davis K, Martin E, Behbod F, Lee YC, Murad F (1998) An activity in rat tissues that modifies nitrotyrosine-containing proteins. Proc Natl Acad Sci USA 95(20):11584–11589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Irie Y, Saeki M, Kamisaki Y, Martin E, Murad F (2003) Histone H1.2 is a substrate for denitrase, an activity that reduces nitrotyrosine immunoreactivity in proteins. Proc Natl Acad Sci USA 100(10):5634–5639. doi:10.1073/pnas.1131756100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Smallwood HS, Lourette NM, Boschek CB, Bigelow DJ, Smith RD, Pasa-Tolic L, Squier TC (2007) Identification of a denitrase activity against calmodulin in activated macrophages using high-field liquid chromatography—FTICR mass spectrometry. Biochemistry 46(37):10498–10505. doi:10.1021/bi7009713

    Article  CAS  PubMed  Google Scholar 

  45. Ill-Raga G, Ramos-Fernandez E, Guix FX, Tajes M, Bosch-Morato M, Palomer E, Godoy J, Belmar S, Cerpa W, Simpkins JW, Inestrosa Nc, Munoz FJ (2010) Amyloid-beta peptide fibrils induce nitro-oxidative stress in neuronal cells. J Alzheimers Dis 22(2):641–652. doi:10.3233/JAD-2010-100474

    CAS  PubMed  Google Scholar 

  46. Osoata GO, Ito M, Elliot M, Hogg J, Barnes PJ, Ito K (2012) Reduced denitration activity in peripheral lung of chronic obstructive pulmonary disease. Tanaffos 11(4):23–29

    PubMed Central  PubMed  Google Scholar 

  47. Deeb RS, Nuriel T, Cheung C, Summers B, Lamon BD, Gross SS, Hajjar DP (2013) Characterization of a cellular denitrase activity that reverses nitration of cyclooxygenase. Am J Physiol Heart Circ Physiol 305(5):H687–H698. doi:10.1152/ajpheart.00876.2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Shi Q, Xu H, Yu H, Zhang N, Ye Y, Estevez AG, Deng H, Gibson GE (2011) Inactivation and reactivation of the mitochondrial alpha-ketoglutarate dehydrogenase complex. J Biol Chem 286(20):17640–17648. doi:10.1074/jbc.M110.203018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Butterfield DA, Reed TT, Perluigi M, De Marco C, Coccia R, Keller JN, Markesbery WR, Sultana R (2007) Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: implications for the role of nitration in the progression of Alzheimer’s disease. Brain Res 1148:243–248. doi:10.1016/j.brainres.2007.02.084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Cenini G, Sultana R, Memo M, Butterfield DA (2008) Effects of oxidative and nitrosative stress in brain on p53 proapoptotic protein in amnestic mild cognitive impairment and Alzheimer disease. Free Rad Biol Med 45(1):81–85. doi:10.1016/j.freeradbiomed.2008.03.015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Reyes JF, Reynolds MR, Horowitz PM, Fu Y, Guillozet-Bongaarts AL, Berry R, Binder LI (2008) A possible link between astrocyte activation and tau nitration in Alzheimer’s disease. Neurobiol Dis 31(2):198–208. doi:10.1016/j.nbd.2008.04.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Gibson GE, Sheu KF, Blass JP, Baker A, Carlson KC, Harding B, Perrino P (1988) Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer’s disease. Arch Neurol 45(8):836–840

    Article  CAS  PubMed  Google Scholar 

  53. Sahakian JA, Szweda LI, Friguet B, Kitani K, Levine RL (1995) Aging of the liver: proteolysis of oxidatively modified glutamine synthetase. Arch Biochem Biophys 318(2):411–417. doi:10.1006/abbi.1995.1248

    Article  CAS  PubMed  Google Scholar 

  54. Souza JM, Choi I, Chen Q, Weisse M, Daikhin E, Yudkoff M, Obin M, Ara J, Horwitz J, Ischiropoulos H (2000) Proteolytic degradation of tyrosine nitrated proteins. Arch Biochem Biophys 380(2):360–366. doi:10.1006/abbi.2000.1940

    Article  CAS  PubMed  Google Scholar 

  55. Fucci L, Oliver CN, Coon MJ, Stadtman ER (1983) Inactivation of key metabolic enzymes by mixed-function oxidation reactions: possible implication in protein turnover and ageing. Proc Natl Acad Sci USA 80(6):1521–1525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Fernandes SP, Dringen R, Lawen A, Robinson SR (2011) Inactivation of astrocytic glutamine synthetase by hydrogen peroxide requires iron. Neuro Lett 490(1):27–30. doi:10.1016/j.neulet.2010.12.019

    Article  CAS  Google Scholar 

  57. Farber JM, Levine RL (1986) Sequence of a peptide susceptible to mixed-function oxidation. Probable cation binding site in glutamine synthetase. J Biol Chem 261(10):4574–4578

    CAS  PubMed  Google Scholar 

  58. Climent I, Levine RL (1991) Oxidation of the active site of glutamine synthetase: conversion of arginine-344 to gamma-glutamyl semialdehyde. Arch Biochem Biophys 289(2):371–375

    Article  CAS  PubMed  Google Scholar 

  59. Liaw SH, Villafranca JJ, Eisenberg D (1993) A model for oxidative modification of glutamine synthetase, based on crystal structures of mutant H269N and the oxidized enzyme. Biochemistry 32(31):7999–8003

    Article  CAS  PubMed  Google Scholar 

  60. Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43(5):1369–1374

    Article  CAS  PubMed  Google Scholar 

  61. Kanthan R, Shuaib A, Griebel R, Miyashita H (1995) Intracerebral human microdialysis. In vivo study of an acute focal ischemic model of the human brain. Stroke 26(5):870–873

    Article  CAS  PubMed  Google Scholar 

  62. Yudkoff M, Zaleska MM, Nissim I, Nelson D, Erecinska M (1989) Neuronal glutamine utilization: pathways of nitrogen transfer studied with [15N]glutamine. J Neurochem 53(2):632–640

    Article  CAS  PubMed  Google Scholar 

  63. Krajnc D, Neff NH, Hadjiconstantinou M (1996) Glutamate, glutamine and glutamine synthetase in the neonatal rat brain following hypoxia. Brain Res 707(1):134–137

    Article  CAS  PubMed  Google Scholar 

  64. Swamy M, Salleh MJ, Sirajudeen KN, Yusof WR, Chandran G (2010) Nitric oxide (no), citrulline - no cycle enzymes, glutamine synthetase and oxidative stress in anoxia (hypobaric hypoxia) and reperfusion in rat brain. Int J Med Sci 7(3):147–154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Groenendaal F, Shadid M, McGowan JE, Mishra OP, van Bel F (2000) Effects of deferoxamine, a chelator of free iron, on NA(+), K(+)-ATPase activity of cortical brain cell membrane during early reperfusion after hypoxia-ischemia in newborn lambs. Pediatr Res 48(4):560–564. doi:10.1203/00006450-200010000-00023

    Article  CAS  PubMed  Google Scholar 

  66. Peeters-Scholte C, Braun K, Koster J, Kops N, Blomgren K, Buonocore G, van Buul-Offers S, Hagberg H, Nicolay K, van Bel F, Groenendaal F (2003) Effects of allopurinol and deferoxamine on reperfusion injury of the brain in newborn piglets after neonatal hypoxia-ischemia. Pediatr Res 54(4):516–522. doi:10.1203/01.PDR.0000081297.53793.C6

    Article  CAS  PubMed  Google Scholar 

  67. Shutenko Z, Henry Y, Pinard E, Seylaz J, Potier P, Berthet F, Girard P, Sercombe R (1999) Influence of the antioxidant quercetin in vivo on the level of nitric oxide determined by electron paramagnetic resonance in rat brain during global ischemia and reperfusion. Biochem Pharm 57(2):199–208

    Article  CAS  PubMed  Google Scholar 

  68. Kumura E, Yoshimine T, Iwatsuki KI, Yamanaka K, Tanaka S, Hayakawa T, Shiga T, Kosaka H (1996) Generation of nitric oxide and superoxide during reperfusion after focal cerebral ischemia in rats. Am J Physiol 270(3 Pt 1):C748–C752

    CAS  PubMed  Google Scholar 

  69. Antunes F, Boveris A, Cadenas E (2004) On the mechanism and biology of cytochrome oxidase inhibition by nitric oxide. Proc Natl Acad Sci USA 101(48):16774–16779. doi:10.1073/pnas.0405368101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Peinado MA, Hernandez R, Peragon J, Ovelleiro D, Pedrosa JA, Blanco S (2014) Proteomic characterization of nitrated cell targets after hypobaric hypoxia and reoxygenation in rat brain. J Proteomics 109C:309–321. doi:10.1016/j.jprot.2014.07.015

    Article  CAS  Google Scholar 

  71. Sen S, Phillis JW (1993) alpha-Phenyl-tert-butyl-nitrone (PBN) attenuates hydroxyl radical production during ischemia-reperfusion injury of rat brain: an EPR study. Free Rad Res Comm 19(4):255–265

    Article  CAS  Google Scholar 

  72. Petito CK, Chung MC, Verkhovsky LM, Cooper AJ (1992) Brain glutamine synthetase increases following cerebral ischemia in the rat. Brain Res 569(2):275–280

    Article  CAS  PubMed  Google Scholar 

  73. Akinmoladun AC, Akinrinola BL, Olaleye MT, Farombi EO (2015) Kolaviron, a Garcinia kola Biflavonoid complex, protects against ischemia/reperfusion injury: pertinent mechanistic insights from biochemical and physical evaluations in rat brain. Neurochem Res 40(4):777–787. doi:10.1007/s11064-015-1527-z

    Article  CAS  PubMed  Google Scholar 

  74. Lee DR, Helps SC, Gibbins IL, Nilsson M, Sims NR (2003) Losses of NG2 and NeuN immunoreactivity but not astrocytic markers during early reperfusion following severe focal cerebral ischemia. Brain Res 989(2):221–230

    Article  CAS  PubMed  Google Scholar 

  75. Babu CS, Ramanathan M (2009) Pre-ischemic treatment with memantine reversed the neurochemical and behavioural parameters but not energy metabolites in middle cerebral artery occluded rats. Pharmacol Biochem Behav 92(3):424–432. doi:10.1016/j.pbb.2009.01.010

    Article  CAS  PubMed  Google Scholar 

  76. Folbergrova J, Kiyota Y, Pahlmark K, Memezawa H, Smith ML, Siesjo BK (1993) Does ischemia with reperfusion lead to oxidative damage to proteins in the brain? J Cereb Blood Flow Metab 13(1):145–152. doi:10.1038/jcbfm.1993.17

    Article  CAS  PubMed  Google Scholar 

  77. Verma R, Mishra V, Sasmal D, Raghubir R (2010) Pharmacological evaluation of glutamate transporter 1 (GLT-1) mediated neuroprotection following cerebral ischemia/reperfusion injury. Eur J Pharmacol 638(1–3):65–71. doi:10.1016/j.ejphar.2010.04.021

    Article  CAS  PubMed  Google Scholar 

  78. Babu CS, Ramanathan M (2011) Post-ischemic administration of nimodipine following focal cerebral ischemic-reperfusion injury in rats alleviated excitotoxicity, neurobehavioural alterations and partially the bioenergetics. Int J Dev Neurosci 29(1):93–105. doi:10.1016/j.ijdevneu.2010.08.001

    Article  CAS  PubMed  Google Scholar 

  79. Sunil AG, Kesavanarayanan KS, Kalaivani P, Sathiya S, Ranju V, Priya RJ, Pramila B, Paul FD, Venkhatesh J, Babu CS (2011) Total oligomeric flavonoids of Cyperus rotundus ameliorates neurological deficits, excitotoxicity and behavioral alterations induced by cerebral ischemic-reperfusion injury in rats. Brain Res Bull 84(6):394–405. doi:10.1016/j.brainresbull.2011.01.008

    Article  CAS  PubMed  Google Scholar 

  80. Hansel G, Ramos DB, Delgado CA, Souza DG, Almeida RF, Portela LV, Quincozes-Santos A, Souza DO (2014) The potential therapeutic effect of guanosine after cortical focal ischemia in rats. PLoS ONE 9(2):e90693. doi:10.1371/journal.pone.0090693

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Oliver CN, Starke-Reed PE, Stadtman ER, Liu GJ, Carney JM, Floyd RA (1990) Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci USA 87(13):5144–5147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Lee A, Lingwood BE, Bjorkman ST, Miller SM, Poronnik P, Barnett NL, Colditz P, Pow DV (2010) Rapid loss of glutamine synthetase from astrocytes in response to hypoxia: implications for excitotoxicity. J Chem Neuroanat 39(3):211–220. doi:10.1016/j.jchemneu.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  83. Du C, Koretsky AP, Izrailtyan I, Benveniste H (2005) Simultaneous detection of blood volume, oxygenation, and intracellular calcium changes during cerebral ischemia and reperfusion in vivo using diffuse reflectance and fluorescence. J Cereb Blood Flow Metab 25(8):1078–1092. doi:10.1038/sj.jcbfm.9600102

    Article  CAS  PubMed  Google Scholar 

  84. Uematsu D, Greenberg JH, Reivich M, Karp A (1988) In vivo measurement of cytosolic free calcium during cerebral ischemia and reperfusion. Ann Neurol 24(3):420–428. doi:10.1002/ana.410240311

    Article  CAS  PubMed  Google Scholar 

  85. Frade JG, Barbosa RM, Laranjinha J (2009) Stimulation of NMDA and AMPA glutamate receptors elicits distinct concentration dynamics of nitric oxide in rat hippocampal slices. Hippocampus 19(7):603–611. doi:10.1002/hipo.20536

    Article  CAS  PubMed  Google Scholar 

  86. Mitani A, Namba S, Ikemune K, Yanase H, Arai T, Kataoka K (1998) Postischemic enhancements of N-methyl-d-aspartic acid (NMDA) and non-NMDA receptor-mediated responses in hippocampal CA1 pyramidal neurons. J Cereb Blood Flow Metab 18(10):1088–1098. doi:10.1097/00004647-199810000-00005

    Article  CAS  PubMed  Google Scholar 

  87. Ikemune K, Mitani A, Namba S, Kataoka K, Arai T (1999) Functional changes of N-methyl-d-aspartic acid and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate channels in gerbil hippocampal CA1, in relation to postischemic enhancement of glutamate receptor-mediated responses. Neurosci Lett 275(2):125–128

    Article  CAS  PubMed  Google Scholar 

  88. Howells DW, Porritt MJ, Rewell SS, O’Collins V, Sena ES, van der Worp HB, Traystman RJ, Macleod MR (2010) Different strokes for different folks: the rich diversity of animal models of focal cerebral ischemia. J Cereb Blood Flow Metab 30(8):1412–1431. doi:10.1038/jcbfm.2010.66

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Dao DN, Ahdab-Barmada M, Schor NF (1991) Cerebellar glutamine synthetase in children after hypoxia or ischemia. Stroke 22(10):1312–1316

    Article  CAS  PubMed  Google Scholar 

  90. Patel AJ, Hunt A, Faraji-Shadan F (1986) Effect of removal of glutamine and addition of dexamethasone on the activities of glutamine synthetase, ornithine decarboxylase and lactate dehydrogenase in primary cultures of forebrain and cerebellar astrocytes. Brain Res 391(2):229–238

    Article  CAS  PubMed  Google Scholar 

  91. Laping NJ, Nichols NR, Day JR, Johnson SA, Finch CE (1994) Transcriptional control of glial fibrillary acidic protein and glutamine synthetase in vivo shows opposite responses to corticosterone in the hippocampus. Endocrinology 135(5):1928–1933. doi:10.1210/endo.135.5.7956913

    CAS  PubMed  Google Scholar 

  92. Jackson MJ, Zielke HR, Max SR (1995) Effect of dibutyryl cyclic AMP and dexamethasone on glutamine synthetase gene expression in rat astrocytes in culture. Neurochem Res 20(2):201–207

    Article  CAS  PubMed  Google Scholar 

  93. Hsueh CM, Kuo JS, Chen SF (2003) Ischemia/reperfusion-induced changes of hypothalamic-pituitary-adrenal (HPA) activity is opioid related in Sprague-Dawley rat. Neurosci Lett 349(3):155–158

    Article  CAS  PubMed  Google Scholar 

  94. Radak D, Resanovic I, Isenovic ER (2014) Changes in hypothalamus-pituitary-adrenal axis following transient ischemic attack. Angiology 65(8):723–732. doi:10.1177/0003319713503487

    Article  PubMed  CAS  Google Scholar 

  95. Lin CK, Dunn A (1989) Hypophysectomy decreases and growth hormone increases the turnover and mass of rat liver glutamine synthetase. Life Sci 45(25):2443–2450

    Article  CAS  PubMed  Google Scholar 

  96. Lima L, Seabra A, Melo P, Cullimore J, Carvalho H (2006) Post-translational regulation of cytosolic glutamine synthetase of Medicago truncatula. J Exp Bot 57(11):2751–2761. doi:10.1093/jxb/erl036

    Article  CAS  PubMed  Google Scholar 

  97. Khelil M, Rolland B, Fages C, Tardy M (1990) Glutamine synthetase modulation in astrocyte cultures of different mouse brain areas. Glia 3(1):75–80. doi:10.1002/glia.440030110

    Article  CAS  PubMed  Google Scholar 

  98. Levine RL (1989) Proteolysis induced by metal-catalyzed oxidation. Revis Biol Celular 21:347–360

    CAS  PubMed  Google Scholar 

  99. Starke-Reed PE, Oliver CN (1989) Protein oxidation and proteolysis during aging and oxidative stress. Arch Biochem Biophys 275(2):559–567

    Article  CAS  PubMed  Google Scholar 

  100. Bame M, Grier RE, Needleman R, Brusilow WS (2014) Amino acids as biomarkers in the SOD1(G93A) mouse model of ALS. Biochim Biophys Acta 1842(1):79–87. doi:10.1016/j.bbadis.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  101. Bame M, Pentiak PA, Needleman R, Brusilow WS (2012) Effect of sex on lifespan, disease progression, and the response to methionine sulfoximine in the SOD1 G93A mouse model for ALS. Gend Med 9(6):524–535. doi:10.1016/j.genm.2012.10.014

    Article  PubMed  Google Scholar 

  102. Ghoddoussi F, Galloway MP, Jambekar A, Bame M, Needleman R, Brusilow WS (2010) Methionine sulfoximine, an inhibitor of glutamine synthetase, lowers brain glutamine and glutamate in a mouse model of ALS. J Neurol Sci 290(1–2):41–47. doi:10.1016/j.jns.2009.11.013

    Article  CAS  PubMed  Google Scholar 

  103. Brusilow SW, Koehler RC, Traystman RJ, Cooper AJ (2010) Astrocyte glutamine synthetase: importance in hyperammonemic syndromes and potential target for therapy. Neurotherapeutics 7(4):452–470. doi:10.1016/j.nurt.2010.05.015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Cooper AJ (2013) Possible treatment of end-stage hyperammonemic encephalopathy by inhibition of glutamine synthetase. Met Brain Dis 28(2):119–125. doi:10.1007/s11011-012-9338-2

    Article  CAS  Google Scholar 

  105. McNicholas S, Potterton E, Wilson KS, Noble ME (2011) Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr D Biol Crystallogr 67(Pt 4):386–394. doi:10.1107/S0907444911007281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Part of the work described in this review was supported by NIH grant DK 16739 (AJLC) and the Theresa Patnode Santmann Foundation (TMJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Jeitner.

Additional information

Special Issue: In Honor of Dr. Gerald Dienel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeitner, T.M., Battaile, K. & Cooper, A.J.L. Critical Evaluation of the Changes in Glutamine Synthetase Activity in Models of Cerebral Stroke. Neurochem Res 40, 2544–2556 (2015). https://doi.org/10.1007/s11064-015-1667-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1667-1

Keywords

Navigation