Skip to main content

Advertisement

Log in

Etanercept Alleviates Early Brain Injury Following Experimental Subarachnoid Hemorrhage and the Possible Role of Tumor Necrosis Factor-α and c-Jun N-Terminal Kinase Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cerebral inflammation plays a crucial role in early brain injury (EBI) after subarachnoid hemorrhage (SAH). This study investigated the effects of c-Jun N-terminal kinase (JNK) inhibitor SP600125, acetylcholine (Ach), etanercept, and anti-TNF-α on cellular apoptosis in the cerebral cortex and the hippocampus, in order to establish the role of JNK and TNF-α in EBI. The SAH model was established using an endovascular puncture protocol. The reliability of the EBI model was determined by phosphorylated-Bad (pBad) immunohistochemistry. Neurological scores were recorded and western blot was used to detect the expression of JNK and TNF-α, and TUNEL assay was used to mark apoptotic cells. The results showed that pBad positive cells were evenly distributed in the cerebral cortex at different time points. The highest expression of pBad was reached 1 day after SAH, and pJNK and TNF-α reached their peak expression at 2 days after SAH. SP600125, Ach, and etanercept significantly decreased the level of pJNK and TNF-α in the cerebral cortex and the hippocampus. In addition, SP600125 and etanercept reduced cellular apoptosis in the cerebral cortex and the hippocampus and significantly improved neurological scores at 2 days after SAH potentially via inhibition of the JNK-TNF-α pathway. Ach reduced cellular apoptosis only in the cerebral cortex. It is possible that JNK induces TNF-α expression, which in turn enhances JNK expression in EBI after SAH, leading to increased apoptosis in the cerebral cortex and the hippocampus. Thus, our results indicate that that etanercept may be a potential therapeutic agent to alleviate EBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ingall T, Asplund K, Mahonen M, Bonita R (2000) A multinational comparison of subarachnoid hemorrhage epidemiology in the WHO MONICA stroke study. Stroke 31:1054–1061

    Article  CAS  PubMed  Google Scholar 

  2. Linn FH, Rinkel GJ, Algra A, van Gijn J (1996) Incidence of subarachnoid hemorrhage: role of region, year, and rate of computed tomography: a meta-analysis. Stroke 27:625–629

    Article  CAS  PubMed  Google Scholar 

  3. Schuette AJ, Barrow DL (2013) Epidemiology and long-term mortality in subarachnoid hemorrhage. World Neurosurg 80:264–265

    Article  PubMed  Google Scholar 

  4. Broderick JP, Brott TG, Duldner JE, Tomsick T, Leach A (1994) Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke 25:1342–1347

    Article  CAS  PubMed  Google Scholar 

  5. Sehba FA, Hou J, Pluta RM, Zhang JH (2012) The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol 97:14–37

    Article  PubMed Central  PubMed  Google Scholar 

  6. Ostrowski RP, Colohan AR, Zhang JH (2006) Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res 28:399–414

    Article  CAS  PubMed  Google Scholar 

  7. Fujii M, Yan J, Rolland WB, Soejima Y, Caner B, Zhang JH (2013) Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res 4:432–446

    Article  PubMed Central  PubMed  Google Scholar 

  8. Provencio JJ, Vora N (2005) Subarachnoid hemorrhage and inflammation: bench to bedside and back. Semin Neurol 25:435–444

    Article  PubMed  Google Scholar 

  9. Semenzato G (1990) Tumour necrosis factor: a cytokine with multiple biological activities. Br J Cancer 61:354–361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kogo J, Takeba Y, Kumai T, Kitaoka Y, Matsumoto N, Ueno S, Kobayashi S (2006) Involvement of TNF-alpha in glutamate-induced apoptosis in a differentiated neuronal cell line. Brain Res 1122:201–208

    Article  CAS  PubMed  Google Scholar 

  11. Brenner T, Yamin A, Abramsky O, Gallily R (1993) Stimulation of tumor necrosis factor-alpha production by mycoplasmas and inhibition by dexamethasone in cultured astrocytes. Brain Res 608:273–279

    Article  CAS  PubMed  Google Scholar 

  12. Maddahi A, Povlsen GK, Edvinsson L (2012) Regulation of enhanced cerebrovascular expression of proinflammatory mediators in experimental subarachnoid hemorrhage via the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway. J Neuroinflamm 9:274

    Article  CAS  Google Scholar 

  13. Pan YX, Chen KF, Lin YX, Wu W, Zhou XM, Zhang XS, Zhang X, Shi JX (2013) Intracisternal administration of SB203580, a p38 mitogen-activated protein kinase inhibitor, attenuates cerebral vasospasm via inhibition of tumor-necrosis factor-alpha. J Clin Neurosci 20:726–730

    Article  CAS  PubMed  Google Scholar 

  14. Ishizuka N, Yagui K, Tokuyama Y, Yamada K, Suzuki Y, Miyazaki J, Hashimoto N, Makino H, Saito Y, Kanatsuka A (1999) Tumor necrosis factor alpha signaling pathway and apoptosis in pancreatic beta cells. Metabolism 48:1485–1492

    Article  CAS  PubMed  Google Scholar 

  15. O’Connor JJ (2013) Targeting tumour necrosis factor-alpha in hypoxia and synaptic signalling. Ir J Med Sci 182:157–162

    Article  PubMed  Google Scholar 

  16. Jiang Y, Liu DW, Han XY, Dong YN, Gao J, Du B, Meng L, Shi JG (2012) Neuroprotective effects of anti-tumor necrosis factor-alpha antibody on apoptosis following subarachnoid hemorrhage in a rat model. J Clin Neurosci 19:866–872

    Article  CAS  PubMed  Google Scholar 

  17. Bas DB, Abdelmoaty S, Sandor K, Codeluppi S, Fitzsimmons B, Steinauer J, Hua XY, Yaksh TL, Svensson CI (2014) Spinal release of tumour necrosis factor activates c-Jun N-terminal kinase and mediates inflammation-induced hypersensitivity. Eur J Pain. doi:10.1002/ejp.544

    PubMed Central  PubMed  Google Scholar 

  18. Sabio G, Davis RJ (2014) TNF and MAP kinase signalling pathways. Semin Immunol 26:237–245

    Article  CAS  PubMed  Google Scholar 

  19. Pelech SL, Sanghera JS (1992) Mitogen-activated protein kinases: versatile transducers for cell signaling. Trends Biochem Sci 17:233–238

    Article  CAS  PubMed  Google Scholar 

  20. Dai Y, Zhang W, Zhou X, Shi J (2014) Inhibition of c-Jun N-terminal kinase ameliorates early brain injury after subarachnoid hemorrhage through inhibition of a Nur77 dependent apoptosis pathway. Neurochem Res 39:1603–1611

    Article  CAS  PubMed  Google Scholar 

  21. Minero VG, Khadjavi A, Costelli P, Baccino FM, Bonelli G (2013) JNK activation is required for TNFalpha-induced apoptosis in human hepatocarcinoma cells. Int Immunopharmacol 17:92–98

    Article  CAS  PubMed  Google Scholar 

  22. Lawrence MC, Naziruddin B, Levy MF, Jackson A, McGlynn K (2011) Calcineurin/nuclear factor of activated T cells and MAPK signaling induce TNF-{alpha} gene expression in pancreatic islet endocrine cells. J Biol Chem 286:1025–1036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Jeong YH, Hyun JW, Van Le Kim T, Kim DH, Kim HS (2013) Kalopanaxsaponin a exerts anti-inflammatory effects in lipopolysaccharide-stimulated microglia via inhibition of JNK and NF-kappaB/AP-1 pathways. Biomol Ther (Seoul) 21:332–337

    Article  CAS  Google Scholar 

  24. Cole P, Rabasseda X (2004) The soluble tumor necrosis factor receptor etanercept: a new strategy for the treatment of autoimmune rheumatic disease. Drugs Today (Barc) 40:281–324

    Article  CAS  Google Scholar 

  25. Feldmann M, Maini RN (2003) Lasker Clinical Medical Research Award. TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nat Med 9:1245–1250

    Article  CAS  PubMed  Google Scholar 

  26. Bederson JB, Germano IM, Guarino L (1995) Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke 26:1086–1092

    Article  CAS  PubMed  Google Scholar 

  27. Song JN, Zhang M, Li DD, Li M, An JY, Cheng MF, Guo XY (2014) Dynamic expression of the suppressor of cytokine signaling-3 and cytokines in the cerebral basilar artery of rats with subarachnoid hemorrhage, and the effect of acetylcholine. Acta Neurochir (Wien) 156:941–949

    Article  Google Scholar 

  28. Yatsushige H, Yamaguchi-Okada M, Zhou C, Calvert JW, Cahill J, Colohan AR, Zhang JH (2008) Inhibition of c-Jun N-terminal kinase pathway attenuates cerebral vasospasm after experimental subarachnoid hemorrhage through the suppression of apoptosis. Acta Neurochir Suppl 104:27–31

    Article  CAS  PubMed  Google Scholar 

  29. Sugawara T, Ayer R, Jadhav V, Zhang JH (2008) A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods 167:327–334

    Article  PubMed Central  PubMed  Google Scholar 

  30. Lee JY, Sagher O, Keep R, Hua Y, Xi G (2009) Comparison of experimental rat models of early brain injury after subarachnoid hemorrhage. Neurosurgery 65:331–343

    Article  PubMed  Google Scholar 

  31. Zhang XS, Zhang X, Wu Q, Li W, Zhang QR, Wang CX, Zhou XM, Li H, Shi JX, Zhou ML (2014) Astaxanthin alleviates early brain injury following subarachnoid hemorrhage in rats: possible involvement of Akt/bad signaling. Mar Drugs 12:4291–4310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Li DL, Liu JJ, Liu BH, Hu H, Sun L, Miao Y, Xu HF, Yu XJ, Ma X, Ren J, Zang WJ (2011) Acetylcholine inhibits hypoxia-induced tumor necrosis factor-alpha production via regulation of MAPKs phosphorylation in cardiomyocytes. J Cell Physiol 226:1052–1059

    Article  CAS  PubMed  Google Scholar 

  33. Willrich MA, Murray DL, Snyder MR (2014) Tumor necrosis factor inhibitors: clinical utility in autoimmune diseases. Transl Res. doi:10.1016/j.trsl.2014.09.006

    PubMed  Google Scholar 

  34. St. Michael’s Hospital, Toronto (2013) Safety and efficacy study of etanercept for aneurysmal subarachnoid hemorrhage. ClinicalTrials.gov Identifier: NCT01865630. http://clinicaltrials.gov/show/NCT01865630. First received 27 May 2013

  35. Park IS, Meno JR, Witt CE, Suttle TK, Chowdhary A, Nguyen TS, Ngai AC, Britz GW (2008) Subarachnoid hemorrhage model in the rat: modification of the endovascular filament model. J Neurosci Methods 172:195–200

    Article  PubMed  Google Scholar 

  36. Nau R, Haase S, Bunkowski S, Bruck W (2002) Neuronal apoptosis in the dentate gyrus in humans with subarachnoid hemorrhage and cerebral hypoxia. Brain Pathol 12:329–336

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 30870844), the Key Scientific and Technological Innovation Special Projects of Shaanxi “13115” (No. 2008ZDKG-66) and the Special Research Fund for the Doctoral Disciplinary Points in Universities of Ministry of Education (No. 20110201110060).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-ning Song.

Additional information

Bin-fei Zhang and Jin-ning Song should be listed as the co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Bf., Song, Jn., Ma, Xd. et al. Etanercept Alleviates Early Brain Injury Following Experimental Subarachnoid Hemorrhage and the Possible Role of Tumor Necrosis Factor-α and c-Jun N-Terminal Kinase Pathway. Neurochem Res 40, 591–599 (2015). https://doi.org/10.1007/s11064-014-1506-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1506-9

Keywords

Navigation