Skip to main content

Advertisement

Log in

Analgesic Effect of Piracetam on Peripheral Neuropathic Pain Induced by Chronic Constriction Injury of Sciatic Nerve in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Despite immense advances in the treatment strategies, management of neuropathic pain remains unsatisfactory. Piracetam is a prototype of nootropic drugs, used to improve cognitive impairment. The present study was designed to investigate the effect of piracetam on peripheral neuropathic pain in rats. Neuropathic pain was induced by the chronic constriction injury of the sciatic nerve. Following this, piracetam was intraperitoneally administered for 2 weeks in doses of 50, 100 and 200 mg/kg, and pain was assessed by employing the behavioural tests for thermal hyperalgesia (hot plate and tail flick tests) and cold allodynia (acetone test). After the induction of neuropathic pain, significant development of thermal hyperalgesia and cold allodynia was observed. The administration of piracetam (50 mg/kg) did not have any significant effect on all the behavioural tests. Further, piracetam (100 mg/kg) also had no effect on the hot plate and tail flick tests; however it significantly decreased the paw withdrawal duration in the acetone test. Piracetam in a dose of 200 mg/kg significantly modulated neuropathic pain as observed from the increased hot plate and tail flick latencies, and decreased paw withdrawal duration (in acetone test). Therefore, the present study suggests the potential use of piracetam in the treatment of neuropathic pain, which merits further clinical investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ossipov MH, Lopez Y, Nichols ML, Bian D, Porreca F (1995) The loss of antinociceptive efficacy of spinal morphine in rats with nerve ligation injury is prevented by reducing spinal afferent drive. Neurosci Lett 199:87–90

    CAS  PubMed  Google Scholar 

  2. Bleeker CP, Bremer RC, Dongelmans DA, van Dongen RT, Crul BJ (2001) Inefficacy of high-dose transdermal fentanyl in a patient with neuropathic pain, a case report. Eur J Pain 5:325–329

    Article  CAS  PubMed  Google Scholar 

  3. Onghena P, Van Houdenhove B (1992) Antidepressant-induced analgesia in chronic non-malignant pain: a meta-analysis of 39 placebo-controlled studies. Pain 49:205–220

    Article  CAS  PubMed  Google Scholar 

  4. Arner S, Lindblom U, Meyerson BA, Molander C (1990) Prolonged relief of neuralgia after regional anesthetic blocks: a call for further experimental and systematic clinical studies. Pain 43:287–297

    Article  CAS  PubMed  Google Scholar 

  5. Rowbotham MC, Reisner-Keller LA, Fields HL (1991) Both intravenous lidocaine and morphine reduce the pain of post-herpetic neuralgia. Neurology 41:1024–1028

    Article  CAS  PubMed  Google Scholar 

  6. Davis KD, Treede RD, Raja SN, Meyer RA, Campbell JN (1991) Topical application of clonidine relieves hyperalgesia in patients with sympathetically maintained pain. Pain 47:309–317

    Article  CAS  PubMed  Google Scholar 

  7. Bridges D, Thompson SW, Rice AS (2001) Mechanisms of neuropathic pain. Br J Anaesth 87:12–26

    Article  CAS  PubMed  Google Scholar 

  8. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    Article  CAS  PubMed  Google Scholar 

  9. Seltzer Z, Dubner R, Shir Y (1990) A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43:205–218

    Article  CAS  PubMed  Google Scholar 

  10. Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50:355–363

    Article  CAS  PubMed  Google Scholar 

  11. Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87:149–158

    Article  CAS  PubMed  Google Scholar 

  12. Fox A, Gentry C, Patel S, Kesingland A, Bevan S (2003) Comparative activity of the anti-convulsants oxcarbazepine, carbamazepine, lamotrigine and gabapentin in a model of neuropathic pain in the rat and guinea-pig. Pain 105:355–362

    Article  CAS  PubMed  Google Scholar 

  13. Dowdall T, Robinson I, Meert TF (2005) Comparison of five different rat models of peripheral nerve injury. Pharmacol Biochem Behav 80:93–108

    Article  PubMed  Google Scholar 

  14. Croisile B, Trillet M, Fondarai J, Laurent B, Mauguiere F, Billardon M (1993) Longterm and high-dose piracetam treatment of Alzheimer’s disease. Neurology 43:301–305

    Article  CAS  PubMed  Google Scholar 

  15. Waegemans T, Wilsher CR, Danniau A, Ferris SH, Kurz A, Winblad B (2002) Clinical efficacy of piracetam in cognitive impairment: a meta-analysis. Dement Geriatr Cogn Disord 13:217–224

    Article  CAS  PubMed  Google Scholar 

  16. Giurgea CE (1982) The nootropic concept and its prospective implications. Drug Dev Res 2:441–446

    Article  Google Scholar 

  17. Genkova-Papazova MG, Lazarova-Bakarova MB (1996) Piracetam and fipexide prevent PTZ-kindling-provoked amnesia in rats. Eur Neuropsychopharmacol 6:285–290

    Article  CAS  PubMed  Google Scholar 

  18. Muller WE, Eckert GP, Eckert A (1999) Piracetam: novelty in a unique mode of action. Pharmacopsychiatry 32:2–9

    Article  CAS  PubMed  Google Scholar 

  19. Winblad B (2005) Piracetam: a review of pharmacological properties and clinical uses. CNS Drug Rev 11:169–182

    Article  CAS  PubMed  Google Scholar 

  20. Hakkrainen H, Hakamies L (1928) Piracetam in the treatment of post-concussional syndrome. Eur Neurol 17:50–55

    Article  Google Scholar 

  21. Nickolson V, Wolthuis O (1976) Effect of the acquisition: enhancing drug piracetam on rat cerebral energy metabolism. Biochem Pharmacol 25:2241–2244

    Article  CAS  PubMed  Google Scholar 

  22. Tacconi M, Wurtman R (1986) Piracetam: physiological disposition and mechanism of action. In: Fahn S et al. (eds) Advances in neurology, vol 43. Raven Press, NY

  23. Buresova O, Bures J (1976) Piracetam induced facilitation of interhemispheric transfer of visual information in rats. Psychopharmacologia 46:93–102

    Article  CAS  PubMed  Google Scholar 

  24. Dimond SJ, Scammell RE, Pryce IG, Huws D, Gray C (1979) Some effects of piracetam on chronic schizophrenia. Psychopharmacologia 64:341–348

    Article  CAS  Google Scholar 

  25. Okuyama S, Aihara H (1988) Actions of nootropic drugs on transcallosal response of rats. Neuropharmacology 27:67–72

    Article  CAS  PubMed  Google Scholar 

  26. Keil U, Scherping I, Hauptmann S, Schuessel K, Eckert A, Muller WE (2006) Piracetam improves mitochondrial dysfunction following oxidative stress. Br J Pharmacol 147:199–208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Abdel-Salam OME (2006) Vinpocetine and piracetam exert antinociceptive effect in visceral pain model in mice. Pharmacol Rep 58:680–691

    CAS  PubMed  Google Scholar 

  28. Micov A, Tomic M, Popovic B, Stepanovic-Petrovic R (2010) The antihyperalgesic effect of levetiracetam in an inflammatory model of pain in rats: mechanism of action. Br J Pharmacol 161:384–392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Nikolova M, Petrova L, Dushkova R (1984) Effect of piracetam in models of experimental inflammation. Int J Tissue React 6:17–21

    CAS  PubMed  Google Scholar 

  30. Mehta AK, Halder S, Khanna N, Tandon OP, Singh UR, Sharma KK (2012) Role of NMDA and opioid receptors in neuropathic pain induced by chronic constriction injury of sciatic nerve in rats. J Basic Clin Physiol Pharmacol 23:49–55

    Article  CAS  PubMed  Google Scholar 

  31. Mehta AK, Halder S, Khanna N, Tandon OP, Sharma KK (2012) Antagonism of stimulation-produced analgesia by naloxone and NMDA: role of opioid and NMDA receptors. Hum Exp Toxicol 31:51–56

    Article  CAS  PubMed  Google Scholar 

  32. Mehta AK, Tripathi CD (2014) Commiphora mukul attenuates peripheral neuropathic pain induced by chronic constriction injury of sciatic nerve in rats. Nutr Neurosci. doi:10.1179/1476830513Y.0000000104

  33. Yaksh TL, Tyce GM (1979) Microinjection of morphine into periaqueductal gray evokes the release of serotonin from spinal cord. Brain Res 171:176–181

    Article  CAS  PubMed  Google Scholar 

  34. D’Amour FE, Smith DL (1941) A method for determining loss of pain sensation. J Pharmacol Exp Ther 72:74–79

    Google Scholar 

  35. Dickenson AH, Chapman V, Green GM (1997) The pharmacology of excitatory and inhibitory amino acid mediated events in the transmission and modulation of pain in the spinal cord. Gen Pharmacol 28:633–638

    Article  CAS  PubMed  Google Scholar 

  36. Parsons CG (2001) NMDA receptors as targets for drug action in neuropathic pain. Eur J Pharmacol 429:71–78

    Article  CAS  PubMed  Google Scholar 

  37. Carlton JM, Dougherty PM, Pover CM, Coggeshall RE (1991) Neuroma formation and numbers of axons in a rat model of experimental peripheral neuropathy. Neurosci Lett 131:88–92

    CAS  PubMed  Google Scholar 

  38. Basbaum AI, Gautron M, Jazat F, Mayes M, Guibaud G (1991) The spectrum of fiber loss in a model of neuropathic pain in the rat: an electron microscopic study. Pain 47:359–367

    Article  CAS  PubMed  Google Scholar 

  39. Hains BC, Saab CY, Klein JP, Craner MJ, Waxman SG (2004) Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci 24:4832–4839

    Article  CAS  PubMed  Google Scholar 

  40. Harris JA, Corsi M, Quartaroli M, Arban R, Bentivoglio M (1996) Upregulation of spinal glutamate receptors in chronic pain. Neuroscience 74:7–12

    Article  CAS  PubMed  Google Scholar 

  41. Croul S, Radzievsky A, Sverstuik A, Murray M (1998) NK1, NMDA, 5HT1a, and 5HT2 receptor binding sites in the rat lumbar spinal cord: modulation following sciatic nerve crush. Exp Neurol 154:66–79

    Article  CAS  PubMed  Google Scholar 

  42. Navarro SA, Serafim KG, Mizokami SS, Hohmann MS, Casagrande R, Verri WA Jr (2013) Analgesic activity of piracetam: effect on cytokine production and oxidative stress. Pharmacol Biochem Behav 105:183–192

    Article  CAS  PubMed  Google Scholar 

  43. Khanna N, Malhotra RS, Mehta AK, Garg GR, Halder S, Sharma KK (2011) Interaction of morphine and potassium channel openers on experimental models of pain in mice. Fundam Clin Pharmacol 25:479–484

    Article  CAS  PubMed  Google Scholar 

  44. Khanna N, Malhotra RS, Mehta AK, Garg GR, Halder S, Sharma KK (2010) Potassium channel openers exhibit cross-tolerance with morphine in two experimental models of pain. West Indian Med J 59:473–478

    CAS  PubMed  Google Scholar 

  45. Schaible HG, Schmidt RF (1983) Responses of fine medial articular nerve afferents to passive movements of knee joints. J Neurophysiol 49:1118–1126

    CAS  PubMed  Google Scholar 

  46. Perl ER (1996) Cutaneous polymodal receptors: characteristics and plasticity. Prog Brain Res 113:21–37

    Article  CAS  PubMed  Google Scholar 

  47. Treede RD (1999) Transduction and transmission properties of primary nociceptive afferents. Ross Fiziol Zh Im I M Sechenova 85:205–211

    CAS  PubMed  Google Scholar 

  48. Koltzenburg M (2000) Neural mechanisms of cutaneous nociceptive pain. Clin J Pain 16:S131–S138

    Article  CAS  PubMed  Google Scholar 

  49. Belmonte C, Viana F (2008) Molecular and cellular limits to somatosensory specificity. Mol Pain 4:14

    Article  PubMed Central  PubMed  Google Scholar 

  50. Beissner F, Brandau A, Henke C, Felden L, Baumgärtner U, Treede RD, Oertel BG, Lötsch J (2010) Quick discrimination of A(delta) and C fiber mediated pain based on three verbal descriptors. PLoS One 5:e12944

    Article  PubMed Central  PubMed  Google Scholar 

  51. Gong D, Geng C, Jiang L, Aoki Y, Nakano M, Zhong L (2012) Effect of pyrroloquinoline quinone on neuropathic pain following chronic constriction injury of the sciatic nerve in rats. Eur J Pharmacol 697:53–58

    Article  CAS  PubMed  Google Scholar 

  52. Wagner R, Janjigian M, Myers RR (1998) Anti-inflammatory interleukin-10 therapy in CCI neuropathy decreases thermal hyperalgesia, macrophage recruitment, and endoneural TNF α expression. Pain 74:35–42

    Article  CAS  PubMed  Google Scholar 

  53. Cui JG, Holmin S, Mathiesen T, Meyerson B, Linderoth B (2000) Possible role of inflammatory mediators in tactile hypersensitivity in rat model of mono-neuropathy. Pain 88:239–248

    Article  CAS  PubMed  Google Scholar 

  54. Naik AK, Tandan SK, Dudhgaonkar SP, Jadhav SH, Kataria M, Prakash VR, Kumar D (2006) Role of oxidative stress in pathophysiology of peripheral neuropathy and modulation by N-acetyl-l-cysteine in rats. Eur J Pain 10:573–579

    Article  CAS  PubMed  Google Scholar 

  55. Wagner R, Heckman HM, Myers RR (1998) Wallerian degeneration and hyperalgesia after peripheral nerve injury are glutathione-dependent. Pain 77:173–179

    Article  CAS  PubMed  Google Scholar 

  56. Kim HK, Park SK, Zhou JL, Taglialatela G, Chung K, Coggeshall RE, Chung JM (2004) Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain 111:116–124

    Article  CAS  PubMed  Google Scholar 

  57. Park ES, Gao X, Chung JM, Chung K (2006) Levels of mitochondrial reactive oxygen species increase in rat neuropathic spinal dorsal horn neurons. Neurosci Lett 391:108–111

    CAS  PubMed  Google Scholar 

  58. Kumar A, Meena S, Kalonia H, Gupta A, Kumar P (2011) Effect of nitric oxide in protective effect of melatonin against chronic constriction sciatic nerve injury induced neuropathic pain in rats. Indian J Exp Biol 49:664–671

    CAS  PubMed  Google Scholar 

  59. Isacchi B, Fabbri V, Galeotti N, Bergonzi MC, Karioti A, Ghelardini C, Vannucchi MG, Bilia AR (2011) Salvianolic acid B and its liposomal formulations: anti-hyperalgesic activity in the treatment of neuropathic pain. Eur J Pharm Sci 44:552–558

    Article  CAS  PubMed  Google Scholar 

  60. Kaulaskar S, Bhutada P, Rahigude A, Jain D, Harle U (2012) Effects of naringenin on allodynia and hyperalgesia in rats with chronic constriction injury-induced neuropathic pain. Zhong Xi Yi Jie He Xue Bao 10:1482–1489

    Article  CAS  PubMed  Google Scholar 

  61. Twining CM, Sloane EM, Milligan ED, Chacur M, Martin D, Poole S, Marsh H, Maier SF, Watkins LR (2004) Peri-sciatic pro-inflammatory cytokines, reactive oxygen species, and complement induce mirror-image neuropathic pain in rats. Pain 110:299–309

    Article  CAS  PubMed  Google Scholar 

  62. Guedes RP, Bosco LD, Teixeira CM, Arrujo AS, Llesuy S, Bello-kkein A, Ribeiro MF, Partata WA (2006) Neuropathic pain modifies antioxidant activity in rat spinal cord. Neurochem Res 31:603–609

    Article  CAS  PubMed  Google Scholar 

  63. Rashid MH, Ueda H (2002) Nonopioid and neuropathy-specific analgesic action of the nootropic drug nefiracetam in mice. J Pharmacol Exp Ther 303:226–231

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Prem Suman for her invaluable guidance. The study has been funded by the Science and Engineering Research Board, Department of Science and Technology, Government of India, New Delhi.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chakra D. Tripathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, A.K., Bhati, Y., Tripathi, C.D. et al. Analgesic Effect of Piracetam on Peripheral Neuropathic Pain Induced by Chronic Constriction Injury of Sciatic Nerve in Rats. Neurochem Res 39, 1433–1439 (2014). https://doi.org/10.1007/s11064-014-1329-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1329-8

Keywords

Navigation