Skip to main content
Log in

Neuropathic Pain Modifies Antioxidant Activity in Rat Spinal Cord

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Oxidative stress is an important pathophysiological mechanism of many neurological diseases. Reactive oxygen and nitrogen species have been cited as molecules involved in the nociceptive process. In this study, rats were submitted to sciatic nerve transection (SNT) for induction of neuropathic pain, and enzyme activities of SOD and catalase as well as lipid peroxidation (LPO) were measured in the lumbosacral spinal cord. The results show that LPO was not changed after SNT. SOD activity was reduced 7 days after SNT, while the change in catalase activity occurred on the third and seventh days in both sham and SNT animals. Hyperalgesia in SNT group was detected at the same points in time. These results suggest that SNT was not a strong enough stimulus to deplete all antioxidant content in the spinal cord, since increase in LPO was not detected. However, the role of oxidative stress in nociception can not be excluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sommer C, Myers RR (1995) Neurotransmitters in the spinal cord dorsal horn in a model of painful neuropathy and in nerve crush. Acta Neuropathol 90:478–485

    Article  PubMed  CAS  Google Scholar 

  2. Zimmermann M (2001) Pathobiology of neuropathic pain. Eur J Pharmacol 429:23–37

    Article  PubMed  CAS  Google Scholar 

  3. Millan JM (1999) The induction of pain: an integrative review. Prog Neurobiol 57:1–164

    Article  PubMed  CAS  Google Scholar 

  4. Byers MR, Bonica JJ (2001) Peripheral pain mechanisms and nociceptor plasticity. In: Loeser JD, Butler SH, Chapman R, Turk DC (eds), Bonica’s management of pain, Lippincott Williams & Wilkins, Philadelphia, pp. 26–72

    Google Scholar 

  5. Rydh-Rinder M, Holmberg K, Elfvin LG, Wiesenfeld-Hallin Z, Hökfelt T (1996) Effects of peripheral axotomy on neuropeptides and nitric oxide synthase in dorsal root ganglia and spinal cord of the guinea pig: an immunohistochemical study. Brain Res 707:180–188

    Article  PubMed  CAS  Google Scholar 

  6. Ma W, Bisby MA (1998) Partial and complete sciatic nerve injuries induce similar increases of neuropeptide Y and vasoactive intestinal peptide immunoreactivities in primary sensory neurons and their central projections. Neuroscience 86:1217–1234

    Article  PubMed  CAS  Google Scholar 

  7. Kim HK, Park SK, Zhou JL, Taglialatela G, Chung K, Coggeshall RE, Chung JM (2004) Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain 111:116–124

    Article  PubMed  CAS  Google Scholar 

  8. Wang Z-Q, Porreca F, Cuzzocrea S, Galen K, Lightfoot R, Masini E, Muscoli C, Mollace V, Ndengele M, Ischiropoulos H, Salvemini DA (2004) Newly identified role for superoxide in inflammatory pain. J Pharmacol Exp Ther 309:869–878

    Article  PubMed  CAS  Google Scholar 

  9. Yu BP (1994) Cellular defenses against damage from reactive oxygen species. Physiol Rev 74:139–162

    PubMed  CAS  Google Scholar 

  10. Fridovich I (1998) Oxygen toxicity: a radical explanation. J Exp Biol 201:1203–1209

    PubMed  CAS  Google Scholar 

  11. Liochev SI, Fridovich I (2003) Mutant Cu,Zn superoxide dismutases and familial amyotrophic lateral sclerosis: evaluation of oxidative hypotheses. Free Radic Biol Med 34:1383–1389

    Article  PubMed  CAS  Google Scholar 

  12. Lee YS, Sindhu RK, Lin CY, Ehdaie A, Lin VW, Vaziri ND (2004) Effects of nerve graft on nitric oxide synthase, NAD(P)H oxidase, and antioxidant enzymes in chronic spinal cord injury. Free Radic Biol Med 36:330–339

    Article  PubMed  CAS  Google Scholar 

  13. Rosenfeld J, Cook S, James R (1997) Expression of superoxide dismutase following axotomy. Exp Neurol 147:37–47

    Article  PubMed  CAS  Google Scholar 

  14. Yu WH (2002) Spatial and temporal correlation of nitric oxide synthase expression with CuZn-superoxide dismutase reduction in motor neurons following axotomy. Ann. N Y Acad Sci 962:111–121

    Article  PubMed  CAS  Google Scholar 

  15. Rogerio F, Teixeira SA, de Rezende AC, de Sa RC, Queiroz L, De Nucci G, Muscara MN, Langone F (2005) Superoxide dismutase isoforms 1 and 2 in lumbar spinal cord of neonatal rats after sciatic nerve transection and melatonin treatment. Brain Res Dev Brain Res 154:217–225

    Article  PubMed  CAS  Google Scholar 

  16. Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126

    PubMed  CAS  Google Scholar 

  17. Marklund SL (1985). Pyrogallol autooxidation. In: Greenwald RA (eds) Handbook of methods for oxygen radical research, CRC Press, Boca Raton, pp 243–247

    Google Scholar 

  18. Buege JA, Aust SD (1978) Microssomal lipid peroxidation. Meth Enzymol 52:302–309

    Article  PubMed  CAS  Google Scholar 

  19. Klein D, Kern RM, Sokol RZ (1995) A method for quantification and correction of proteins after transfer to immobilization membranes. Biochem Mol Biol Int 36:59–66

    PubMed  CAS  Google Scholar 

  20. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  21. Heales S, Lam A, Duncan A, Land J, (2004) Neurodegeneration or neuroprotection: the pivotal role of astrocytes. Neurochem Res 29:513–519

    Article  PubMed  CAS  Google Scholar 

  22. Gegg M, Beltran B, Salas-Pino S, Bolanos JP, Clark JB, Moncada S, Heales SJR (2003) Differential effect of nitric oxide on glutathione metabolism and mitochondrial function in astrocytes and neurones: implications for neuroprotection/neurodegeneration? J Neurochem 86:228–237

    Google Scholar 

  23. Zhang X, Verge V, Wiesenfeld-Hallin Z, Ju G, Bredt D, Synder SH, Hokfelt T (1993) Nitric oxide synthase-like immunoreactivity in lumbar dorsal root ganglia and spinal cord of rat and monkey and effect of peripheral axotomy. J Comp Neurol 335:563–575

    Google Scholar 

  24. Vizzard MA, Erdman SL, de Groat WC (1995) Increased expression of neuronal nitric oxide synthase (NOS) in visceral neurons after nerve injury. J Neurosci 15:4033–4045

    PubMed  CAS  Google Scholar 

  25. Cizkova D, Lukacova N, Marsala M, Marsala J (2002) Neuropathic pain is associated with alterations of nitric oxide synthase immunoreactivity and catalytic activity in dorsal root ganglia and spinal dorsal horn. Brain Res Bull 58:161–171

    Article  PubMed  CAS  Google Scholar 

  26. Yoneda T, Inagaki S, Hayashi Y, Nombra T, Takagi H (1992) Differential regulation of manganese and copper/zinc superoxide dismutases by the facial nerve transection. Brain Res 582:342–345

    Article  PubMed  CAS  Google Scholar 

  27. Gonzalez-Zulueta M, Ensz L, Mukhina G, Lebovitz R, Zwacka R, Engelhardt J, Oberley L, Dawson V, Dawson T (1998) Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity. J Neurosci 18:2040–2055

    PubMed  CAS  Google Scholar 

  28. Khalil Z, Liu T, Helme RD (1999) Free radicals contribute to the reduction in peripheral vascular responses and the maintenance of thermal hyperalgesia in rats with chronic constriction injury. Pain 79:31–37

    Article  PubMed  CAS  Google Scholar 

  29. Viggiano A, Monda M, Viggiano A, Viggiano D, Viggiano E, Chiefari M, Aurilio C, De Luca B (2005) Trigeminal pain transmission requires reactive oxygen species production. Brain Res 1050:72–78

    Article  PubMed  CAS  Google Scholar 

  30. Rhee SG, Bae YS, Lee SR, Kwon J (2000) Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci STKE 53: PE1

    Google Scholar 

  31. Sah R, Galeffi F, Ahrens R, Jordan G, Schwartz-Bloom RD (2002) Modulation of the GABA(A)-gated chloride channel by reactive oxygen species. J Neurochem 80:383–391

    Article  PubMed  CAS  Google Scholar 

  32. Frantseva MV, Perez Velazquez JL, Carlen PL (1998) Changes in membrane and synaptic properties of thalamocortical circuitry caused by hydrogen peroxide. J Neurophysiol 80:1317–1326

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wania A. Partata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guedes, R.P., Bosco, L.D., Teixeira, C.M. et al. Neuropathic Pain Modifies Antioxidant Activity in Rat Spinal Cord. Neurochem Res 31, 603–609 (2006). https://doi.org/10.1007/s11064-006-9058-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9058-2

Keywords

Navigation