Skip to main content
Log in

Effect of Leucine Administration to Female Rats During Pregnancy and Lactation on Oxidative Stress and Enzymes Activities of Phosphoryltransfer Network in Cerebral Cortex and Hippocampus of the Offspring

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Maple Syrup Urine Disease is an inborn error of metabolism caused by severe deficiency in the activity of branched-chain α-keto acid dehydrogenase complex. Neurological disorder is common in patients with maple syrup urine disease. Although leucine is considered the main toxic metabolite, the mechanisms underlying the neuropathology of brain injury are poorly understood. In the present study, we evaluated the possible preventive effect of the co-administration of creatine plus pyruvate on the effects elicited by leucine administration to female Wistar rats during pregnancy and lactation on some oxidative stress parameters as well as the activities of some enzymes involved in the phosphoryltransfer network in the brain cortex and hippocampus of the offspring at 21 days of age. Leucine administration induced oxidative stress and altered the activities of pyruvate kinase, adenylate kinase, mitochondrial and cytosolic creatine kinase. Co-administration of creatine plus pyruvate was partially effective in the prevention of some alterations provoked by leucine administration on the oxidative stress but not in the enzymes of phosphoryltransfer network. These results suggest that non-treated maternal hyperleucinemia may be toxic to the brain of the offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chuang DT, Shih VE (2001) Disorders of branched chain amino acid and keto acid etabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, 8th edn. McGraw-Hill, New York, pp 1971–2001

    Google Scholar 

  2. Dancis J, Hutzler J, Levitz M (1960) Metabolism of the white blood cells in maple syrup urine disease. Biochim Biophys Acta 43:342–347

    Article  PubMed  CAS  Google Scholar 

  3. Menkes JH (1959) Maple syrup urine disease: isolation and identification of organic acids in the urine. Pediatrics 23:348–353

    PubMed  CAS  Google Scholar 

  4. Strauss KA, Wardley B, Robinson D, Hendrickson C, Ridera NL, Puffenberger EG, Shelmer D, Moserg AB, Morton DH (2010) Classical maple syrup urine disease and brain development: Principles of management and formula design. Mol Genet Metab 99:333–345

    Article  PubMed  CAS  Google Scholar 

  5. Snyderman SE, Norton PM, Roitman E (1964) Maple syrup urine disease with particular reference to diet therapy. Pediatrics 34:454–472

    PubMed  CAS  Google Scholar 

  6. Pilla C, Cardozo RF, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM (2003) Creatine kinase activity from rat brain is inhibited by branched-chain amino acids in vitro. Neurochem Res 28:675–679

    Article  PubMed  CAS  Google Scholar 

  7. Pilla C, de Oliveira Cardozo RF, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM (2003) Effect of leucine administration on creatine kinase activity in rat brain. Metab Brain Dis 18:17–25

    Article  PubMed  CAS  Google Scholar 

  8. Feksa LR, Cornelio AR, Dutra-Filho CS, Wyse ATS, Wajner M, Wannmacher CMD (2005) The effects of the interactions between amino acids on pyruvate kinase activity from the brain cortex of young rats. Int J Dev Neurosci 23:509–514

    Article  PubMed  CAS  Google Scholar 

  9. Amaral AU, Leipnitz G, Fernandes CG, Seminotti B, Schuck PF, Wajner M (2010) Alpha-ketoisocaproic acid and leucine provoke mitochondrial bioenergetic dysfunction in rat brain. Brain Res 1324:75–84

    Article  PubMed  CAS  Google Scholar 

  10. Barschak AG, Sitta A, Deon M, Busanello EN, Coelho DM, Cipriani F, Dutra-Filho CS, Giugliani R, Wajner M, Vargas CR (2009) Amino acids levels and lipid peroxidation in maple syrup urine disease patients. Clin Biochem 42:462–466

    Article  PubMed  CAS  Google Scholar 

  11. Mochel F, Durant B, Meng X, O’Callaghan J, Yu H, Brouillet E, Wheeler VC, Humbert S, Schiffmann R, Durr A (2012) Early alterations of brain cellular energy homeostasis in huntington disease models. J Biol Chem 287:1361–1370

    Article  PubMed  CAS  Google Scholar 

  12. Beal MF (1995) Aging, energy and oxidative stress in neurodegenerative diseases. Ann Neurol 38:357–366

    Article  PubMed  CAS  Google Scholar 

  13. Beal MF (2000) Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci 23:298–304

    Article  PubMed  CAS  Google Scholar 

  14. Kessler A, Costabeber E, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM (2003) Proline reduces creatine kinase activity in the brain cortex of rats. Neurochem Res 28:1175–1180

    Article  PubMed  CAS  Google Scholar 

  15. Costabeber E, Kessler A, Severo Dutra-Filho C, de Souza Wyse AT, Wajner M, Wannmacher CM (2003) Hyperphenylalaninemia reduces creatine kinase activity in the cerebral cortex of rats. Int J Dev Neurosci 21:111–116

    Article  PubMed  CAS  Google Scholar 

  16. Feksa LR, Cornelio AR, Vargas CR, de Souza Wyse AT, Dutra-Filho CS, Wajner M, Wannmacher CM (2003) Alanine prevents the inhibition of pyruvate kinase activity caused by tryptophan in cerebral cortex of rats. Metab Brain Dis 18:129–137

    Article  PubMed  CAS  Google Scholar 

  17. Cornelio AR, Rodrigues V Jr, de Souza Wyse AT, Dutra-Filho CS, Wajner M, Wannmacher CM (2004) Tryptophan reduces creatine kinase activity in the brain cortex of rats. Int J Dev Neurosci 22:95–101

    Article  PubMed  CAS  Google Scholar 

  18. Rech VC, Feksa LR, Fleck RM, Athaydes GA, Dornelles PK, Rodrigues-Junior V, Wannmacher CM (2008) Cysteamine prevents inhibition of thiol-containing enzymes caused by cystine or cystine dimethylester loading in rat brain cortex. Metab Brain Dis 23:133–145

    Article  PubMed  CAS  Google Scholar 

  19. de Andrade RB, Gemelli T, Rojas DB, Funchal C, Dutra-Filho CS, Wannmacher CM (2012) Tyrosine impairs enzymes of energy metabolism in cerebral cortex of rats. Mol Cell Biochem 364:253–261

    Article  PubMed  CAS  Google Scholar 

  20. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  21. Dzeja PP, Terzic A (2003) Phosphotransfer networks and cellular energetics. J Exp Biol 206:2039–2047

    Article  PubMed  CAS  Google Scholar 

  22. Dzeja PP, Zeleznikar RJ, Goldberg ND (1998) Adenylate kinase: kinetic behavior intact cells indicates it is integral to multiple cellular processes. Mol Cell Biochem 184:169–182

    Article  PubMed  CAS  Google Scholar 

  23. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281:21–40

    PubMed  CAS  Google Scholar 

  24. Saks VA, Khuchua ZA, Vasilyeva EV, Belikova O, Kuznetsov AV (1994) Metabolic compartmentation and substrate channelling in muscle cells. Role of coupled creatine kinases in vivo regulation of cellular respiration—a synthesis. Mol Cell Biochem 134:155–192

    Article  Google Scholar 

  25. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  PubMed  CAS  Google Scholar 

  26. Hayashi M, Miyata R, Tanuma N (2012) Oxidative stress in developmental brain disorders. Adv Exp Med Biol 724:278–290

    Article  PubMed  CAS  Google Scholar 

  27. Reed TT (2011) Lipid peroxidation and neurodegenerative disease. Free Radical Biol Med 51:1302–1319

    Article  CAS  Google Scholar 

  28. Mescka C, Moraes T, Rosa A, Mazzola P, Piccoli B, Jacques C, Dalazen G, Coelho J, Cortes M, Terra M, Regla Vargas C, Dutra-Filho CS (2011) In vivo neuroprotective effect of L-carnitine against oxidative stress in maple syrup urine disease. Metab Brain Dis 26:21–28

    Article  PubMed  CAS  Google Scholar 

  29. Feksa LR, Latini A, Rech VC, Feksa PB, Koch GD, Amaral MF, Leipnitz G, Dutra-Filho CS, Wajner M, Wannmacher CM (2008) Tryptophan administration induces oxidative stress in brain cortex of rats. Metab Brain Dis 23:221–233

    Article  PubMed  CAS  Google Scholar 

  30. Wajner M, Latini A, Wyse AT, Dutra-Filho CS (2004) The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis 27:427–448

    Article  PubMed  CAS  Google Scholar 

  31. Rojas DB, Gemelli T, de Andrade RB, Campos AG, Dutra-Filho CS, Wannmacher CM (2012) Administration of histidine to female rats induces changes in oxidative status in cortex and hippocampus of the offspring. Neurochem Res 37:1031–1036

    Article  PubMed  CAS  Google Scholar 

  32. Sestili P, Martinelli C, Bravi G, Piccoli G, Curci R, Battistelli M, Falcieri E, Agostini D, Gioacchini AM, Stocchi V (2006) Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radic Biol Med 40:837–849

    Article  PubMed  CAS  Google Scholar 

  33. Kraemer WJ, Volek JS (1999) Creatine supplementation. Its role in human performance. Clin Sports Med 18:651–666

    Article  PubMed  CAS  Google Scholar 

  34. Lawler JM, Barnes WS, Wu G, Song W, Demaree S (2002) Direct antioxidant properties of creatine. Biochem Biophys Res Commun 290:47–52

    Article  PubMed  CAS  Google Scholar 

  35. Sartini S, Sestili P, Colombo E, Martinelli C, Bartolini F, Ciuffoli S, Lattanzi D, Sisti D, Cuppini R (2012) Creatine affects in vitro electrophysiological maturation of neuroblasts and protects them from oxidative stress. J Neurosci Res 90:435–446

    Article  PubMed  CAS  Google Scholar 

  36. Ferrante RJ, Andreassen OA, Jenkins BG, Dedeoglu A, Kuemmerle S, Kubilus JK, Kaddurah-Daouk R, Hersch SM, Beal MF (2000) Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J Neurosci 20:4389–4397

    PubMed  CAS  Google Scholar 

  37. Matthews RT, Ferrante RJ, Klivenyi P, Yang L, Klein AM, Mueller G, Kaddurah-Daouk R, Beal MF (1999) Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol 157:142–149

    Article  PubMed  CAS  Google Scholar 

  38. Beal M (2011) Neuroprotective effects of creatine. Amino Acids 40:1305–1313

    Article  PubMed  CAS  Google Scholar 

  39. Ryou MG, Liu R, Ren M, Sun J, Mallet RT, Yang SH (2012) Pyruvate protects the brain against ischemia–reperfusion injury by activating the erythropoietin signaling pathway. Stroke 43:1101–1107

    Article  PubMed  CAS  Google Scholar 

  40. Ullah N, Naseer MI, Ullah I, Lee HY, Koh PO, Kim MO (2011) Protective effect of pyruvate against ethanol-induced apoptotic neurodegeneration in the developing rat brain. Neuropharmacology 61:1248–1255

    Article  PubMed  CAS  Google Scholar 

  41. Giandomenico AR, Cerniglia GE, Biaglow JE, Stevens CW, Koch CJ (1997) The importance of sodium pyruvate in assessing damage produced by hydrogen peroxide. Free Radic Biol Med 23:426–434

    Article  PubMed  CAS  Google Scholar 

  42. Jagtap JC, Chandele A, Chopde BA, Shastry P (2003) Sodium pyruvate protects against H2O2 mediated apoptosis in human neuroblastoma cell line-SK-N-MC. J Chem Neuroanat 26:109–118

    Article  PubMed  CAS  Google Scholar 

  43. Mazzio E, Soliman KFA (2003) Pyruvic acid cytoprotection against 1-methyl-4-phenylpyridinium, 6-hydroxydopamine and hydrogen peroxide toxicities in vitro. Neurosci Lett 337:77–80

    Article  PubMed  CAS  Google Scholar 

  44. Berti SL, Nasi GM, Garcia C, Castro FL, Nunes ML, Rojas DB, Moraes TB, Dutra-Filho CS, Wannmacher CM (2012) Pyruvate and creatine prevent oxidative stress and behavioral alterations caused by phenylalanine administration into hippocampus of rats. Metab Brain Dis 27:79–89

    Article  PubMed  CAS  Google Scholar 

  45. Andrade VS, Rojas DB, Oliveira L, Nunes ML, de Castro FL, Garcia C, Gemelli T, de Andrade RB, Wannmacher CM (2012) Creatine and pyruvate prevent behavioral and oxidative stress alterations caused by hypertryptophanemia in rats. Mol Cell Biochem 362:225–232

    Article  PubMed  CAS  Google Scholar 

  46. Stöckler S, Holzbach U, Hanenfeld F, Marquardt I, Helms G, Requart M, Hänicke W, Frahm J (1994) Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatric Res 36:409–413

    Article  Google Scholar 

  47. Ryu JK, Choi HB, Mclarnon JB (2006) Combined minocycline plus pyruvate treatment enhances effects of each agent to inhibit inflammation, oxidative damage, and neuronal loss in an excitotoxic animal model of Huntington’s disease. Neurosci 141:1835–1848

    Article  CAS  Google Scholar 

  48. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  PubMed  CAS  Google Scholar 

  49. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  50. Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149:43–50

    Article  PubMed  CAS  Google Scholar 

  51. Reznick AZ, Packer L (1994) Oxidative damage of proteins: spectrophotometer for carbonyl assay. Methods Enzymol 233:357–363

    Article  PubMed  CAS  Google Scholar 

  52. Uchida K (2003) Histidine and lysine as targets of oxidative modification. Amino Acids 25:249–257

    Article  PubMed  CAS  Google Scholar 

  53. Levine RL, Garland D, Oliver CN, Amici I, Climent AG, Lenz BW, Ahn S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  PubMed  CAS  Google Scholar 

  54. Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:41–145

    Article  Google Scholar 

  55. Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352

    PubMed  CAS  Google Scholar 

  56. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  57. Marklund SL (1985) Pyrogallol autoxidation. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRC Press Inc., Boca Raton, pp 243–247

    Google Scholar 

  58. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–332

    Article  PubMed  CAS  Google Scholar 

  59. Hughes BP (1962) A method for estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin Chim Acta 7:597–603

    Article  PubMed  CAS  Google Scholar 

  60. Leong SF, Lai JCK, Lim L, Clark JB (1981) Energy-metabolising enzymes in brain regions of adult and aging rats. J Neurochem 37:1548–1556

    Article  PubMed  CAS  Google Scholar 

  61. Dzeja PP, Vitkevicius KT, Redfied MM, Burnett JC, Terzic A (1999) Adenylate kinase-catalyzed phosphotransfer in the myocardium: increased contribution in heart failure. Circ Res 84:1137–1143

    Article  PubMed  CAS  Google Scholar 

  62. Lowry OH, Rosebrough N, Farr AL, Randal RJ (1951) Protein measurement with a Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  63. Skvorak KJ (2009) Animal models of maple syrup urine disease. J Inherit Metab Dis 32:229–246

    Article  PubMed  CAS  Google Scholar 

  64. Moraes TB, Zanin F, da Rosa A, de Oliveira A, Coelho J, Petrillo F, Wajner M, Dutra-Filho CS (2010) Lipoic acid prevents oxidative stress in vitro and in vivo by an acute hyperphenylalaninemia chemically-induced in rat brain. J Neurol Sci 292:89–95

    Article  PubMed  CAS  Google Scholar 

  65. Bridi R, Araldi J, Sgarbi MB, Testa CG, Durigon K, Wajner M, Dutra-Filho CS (2003) Induction of oxidative stress in rat brain by the metabolites accumulating in maple syrup urine disease. Int J Devl Neurosci 21:327–332

    Article  CAS  Google Scholar 

  66. Bridi R, Braun CA, Zorzi GK, Wannmacher CM, Wajner M, Lissi EG, Dutra-Filho CS (2005) Alpha-keto acids accumulating in maple syrup urine disease stimulate lipid peroxidation and reduce antioxidant defences in cerebral cortex from young rats. Metab Brain Dis 20:155–167

    Article  PubMed  CAS  Google Scholar 

  67. Mescka C, Moraes T, Rosa A, Mazzola P, Piccoli B, Jacques C, Dalazen G, Coelho J, Cortes M, Terra M, ReglaVargas C, Dutra-Filho CS (2011) In vivo neuroprotective effect of L-carnitine against oxidative stress in maple syrup urine disease. Metab Brain Dis 26:21–28

    Article  PubMed  CAS  Google Scholar 

  68. Halliwell B, Gutteridge JMC (2007) Measurement of reactive species. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford, pp 268–340

    Google Scholar 

  69. Stadtman ER, Levine RL (2003) Free-radical mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218

    Article  PubMed  CAS  Google Scholar 

  70. Saks V, Dzeja P, Schlattner U, Vendelin M, Terzic A, Wallimann T (2006) Cardiac system bioenergetics: metabolic basis of the Frank-Starling law. J Physiol 571:253–273

    Article  PubMed  CAS  Google Scholar 

  71. Pucar D, Dzeja PP, Bast P, Gumina RJ, Drahl C, Lim L, Juranic N, Macura S, Terzic A (2004) Mapping hypoxia-induced bioenergetic rearrangements and metabolic signaling by 18O-assisted 31PNMR and 1H NMR spectroscopy. Mol Cell Biochem 256–257:281–289

    Article  PubMed  Google Scholar 

  72. Alekseev AE, Reyes S, Selivanov VA, Dzeja PP, Terzic A (2012) Compartmentation of membrane processes and nucleotide dynamics in diffusion-restricted cardiac cell microenvironment. J Mol Cell Cardiol 52:401–409

    Article  PubMed  CAS  Google Scholar 

  73. Dzeja PP, Terzic A (2009) Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing. Int J Mol Sci 10:1729–1772

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the research grants from Programa de Núcleos de Excelência (PRONEX), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) and FINEP Rede Instituto Brasileiro de Neurociência.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clóvis Milton Duval Wannmacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Franceschi, I.D., Rieger, E., Vargas, A.P. et al. Effect of Leucine Administration to Female Rats During Pregnancy and Lactation on Oxidative Stress and Enzymes Activities of Phosphoryltransfer Network in Cerebral Cortex and Hippocampus of the Offspring. Neurochem Res 38, 632–643 (2013). https://doi.org/10.1007/s11064-012-0961-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0961-4

Keywords

Navigation