Skip to main content
Log in

Cysteamine prevents inhibition of thiol-containing enzymes caused by cystine or cystine dimethylester loading in rat brain cortex

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Cystinosis is a systemic genetic disease caused by a lysosomal transport deficiency accumulating cystine in the lysosomes of all tissues. Although tissue damage might depend on cystine accumulation, the mechanisms of tissue damage are still obscures. Considering that thiol-containing enzymes are critical for several metabolic pathways, our main objective was to investigate the effects of cystine or cystine dimethylester load on the thiol-containing enzymes creatine kinase and pyruvate kinase, in the brain cortex of young Wistar rats. The animals were injected twice a day with 1.6 μmol/g body weight of cystine dimethylester or 1μmol/g body weight of cystine and/or 0.46 μmol/g body weight of cysteamine from the 16th to the 20th postpartum day and sacrificed after 12 h. Cystine or cystine dimethylester administration inhibited the two enzyme activities. Co-administration of cysteamine, the drug used to treat cystinotic patients, normalized the two enzyme activities. Lactate dehydrogenase activity, a nonthiol-containing enzyme was not affected by cystine dimethylester administration. Cystine inhibits creatine kinase and pyruvate activities possibly by oxidation of the sulfhydryl groups of the enzymes. Considering that creatine kinase and pyruvate kinase, like other thiol-containing enzymes, are crucial for energy homeostasis and antioxidant defenses, the enzymes inhibition caused by cystine released from lysosomes could be one of the mechanisms of tissue damage in patients with cystinosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrews NW (2000) Regulated secretion of conventional lysosomes. Trends Cell Biol 10:316–321

    Article  PubMed  CAS  Google Scholar 

  • Armstrong JS, Jones DP (2002) Glutathione depletion enforces the mitochondrial permeability transition and causes cell death in Bcl-2 overexpressing HL60 cells. FASEB J 16:1263–1265

    PubMed  CAS  Google Scholar 

  • Baum M (1998) The Fanconi syndrome of cystinosis: insights into the pathophysiology. Pediatr Nephrol 12:492–497

    Article  PubMed  CAS  Google Scholar 

  • Ben-Nun A, Bashan N, Potashnik R, Cohen-Luria R, Moran A (1993) Cystine loading induces Fanconi’s syndrome in rats: in vivo and vesicle studies. Am J Physiol 265:839–844

    Google Scholar 

  • Bergeron M, Gougoux A, Noël J, Parent L (2001) The renal Fanconi syndrome. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited diseases, 8th edn. McGraw-Hill, New York, pp 5023–5083

    Google Scholar 

  • Berry EV, Toms NJ (2006) Pyruvate and oxaloacetate limit zinc-induced oxidative HT-22 neuronal cell injury. Neurotoxicol 27:1043–1051

    Article  CAS  Google Scholar 

  • Burlacu A, Jinga V, Gafencu AV, Simionescu M (2001) Severity of oxidative stress generates different mechanisms of endothelial cell death. Cell Tissue Res 306:409–416

    Article  PubMed  CAS  Google Scholar 

  • Çcetinkaya I, Schlatter E, Hirsch JR, Herter P, Harms E, Kleta R (2002) Inhibition of Na+-dependent transporters in cystine-loaded human renal cells: electrophysiological studies on the Fanconi syndrome of cystinosis. J Am Soc Nephrol 13:2085–2093

    Article  CAS  Google Scholar 

  • Cherqui S, Sevin C, Hamard G, Kalatzis V, Sich M, Pequignot MO, Gogat K, Abitbol M, Broyer M, Gubler MC, Antignac C (2002) Intralysosomal cystine accumulation in mice lacking cystinosin, the protein defective in cystinosis. Mol Cell Biol 22:7622–7632

    Article  PubMed  CAS  Google Scholar 

  • Chol M, Nevo N, Cherqui S, Antignac C, Rustin P (2004) Glutathione precursors replenish decreased glutathione pool in cystinotic cell lines. Biochem Biophys Res Comm 324:231–235

    Article  PubMed  CAS  Google Scholar 

  • Clarke PG (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol 181:195–213

    Article  PubMed  CAS  Google Scholar 

  • Coor C, Salmon RF, Quigley R, Marver D, Baum M (1991) Role of adenosine- triphosphate (ATP) and Na+, K+-ATPase in the inhibition of proximal tubule transport with intracellular cystine loading. J Clin Invest 87:955–961

    Article  PubMed  CAS  Google Scholar 

  • Das UN (2006) Pyruvate is an endogenous anti-inflammatory and anti-oxidant molecule. Med Sci Monit 12:RA79–RA84

    PubMed  CAS  Google Scholar 

  • Feksa LR, Cornelio AR, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CMD (2004) Inhibition of pyruvate kinase activity by cystine in brain cortex of rats. Brain Res 1012:93–100

    Article  PubMed  CAS  Google Scholar 

  • Fleck RM, Rodrigues Jr V, Giacomazzi J, Parissoto D, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CMD (2005) Cysteamine prevents and reverses the inhibition of creatine kinase activity caused by cystine in rat brain cortex. Neurochem Int 46:391–397

    Article  PubMed  CAS  Google Scholar 

  • Foreman JW, Benson L (1990) Effect of cystine loading and cystine dimethyl ester on renal brushborder membrane-transport. Biosci Rep 10:455–459

    Article  PubMed  CAS  Google Scholar 

  • Foreman JW, Bowring MA, Lee J, States B, Segal S (1987) Effect of cystine dimethyl ester on renal solute handling and isolated renal tubule transport in the rat. A new model of the Fanconi syndrome. Metab Clin Exper 36:1185–1191

    CAS  Google Scholar 

  • Foreman JW, Benson LL, Wellons M, Avner ED, Sweeney W, Nissim L, Nissim I (1995) Metabolic studies of rat renal tubule cells loaded with cystine: the cystine dimethyl ester model of cystinosis. J Am Soc Nephrol 6:269–272

    Article  PubMed  CAS  Google Scholar 

  • Gahl WA (2003) Early oral cysteamine therapy for nephropathic cystinosis. Eur J Pediatr 162:S38–S41

    Article  PubMed  CAS  Google Scholar 

  • Gahl WA, Charnas L, Markello TC, Bernardini I, Ishak KG, Dalakas MC (1992) Parenchymal organ cystine depletion with long-term cysteamine therapy. Biochem. Med Metab Biol 48:275–285

    Article  PubMed  CAS  Google Scholar 

  • Gahl WA, Thoene JG, Schneider JA (2001) Cystinosis: a disorder of lysossomal membrane transport. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 5085–5108

    Google Scholar 

  • Gahl WA, Thoene JG, Schneider JA (2002) Cystinosis. N Engl J Med 347:111–121

    Article  PubMed  Google Scholar 

  • Gilbert HF (1984) Redox control of enzyme activities by thiol/disulfide exchange. Meth Enzymol 107:330–351

    PubMed  CAS  Google Scholar 

  • Hall ER, Cottam GL (1978) Isoenzymes of pyruvate kinase in vertebrates: their physical, chemical, kinetic and immunological properties. Int J Biochem 9:785–793

    Article  PubMed  CAS  Google Scholar 

  • Hatano E, Tanaka A, Kanazawa A, Tsuyuki S, Tsunekawa S, Iwata S, Ellerby LM, Bredesen D, Freeze H, Abrahamson M, Bromme D, Krajewski S, Reed JC, Yin XM, Turk V (2004) Inhibition of tumor necrosis factor-induced apoptosis in transgenic mouse liver expressing creatine kinase. Liver Int 24:384–393

    Article  PubMed  CAS  Google Scholar 

  • Hughes BP (1962) A method for the estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin Chim Acta 7:597–603

    Article  PubMed  CAS  Google Scholar 

  • Jiang S, Moriarty-Craige SE, Orr M, Cai J, Sternberg P, Jones DP (2005) Oxidant-induced apoptosis in human retinal pigment epithelial cells: dependence on extracellular redox state. Invest Ophtalmol Vis Sci 46:1054–1061

    Article  Google Scholar 

  • Jonas AJ, Conley SB, Marshall R, Johnson RA, Marks M, Rosenberg H (1987) Nephropathic cystinosis with central nervous system involvement. Am J Med 83:966–970

    Article  PubMed  CAS  Google Scholar 

  • Jones DP, Go YM, Anderson CL, Ziegler TR, Kinkade Jr JM, Kirlin WG (2004) Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control. FASEB J 18:1246–1248

    PubMed  CAS  Google Scholar 

  • Kaplan A, Szabo LL, Opheim KE (1988) Clinical Chemistry: Interpretation and technique. Lea and Febiger, Philadelphia, pp 186–189

    Google Scholar 

  • Laube GF, Shah V, Stewart VC, Hargreaves IP, Haq MR, Heales SJ, van’t Hoff WG (2006) Glutathione depletion and increased apoptosis rate in human cystinotic proximal tubular cells. Pediatr Nephrol 21:503–509

    Article  PubMed  Google Scholar 

  • Leech NL, Barrett KC, Morgan GA (2005) SPSS for intermediate statistics. Use and interpretation, 2nd edn. Erlbaum, London

    Google Scholar 

  • Leong SF, Lai JC, Lim L, Clark JB (1981) Energy-metabolising enzymes in brain regions of adult and aging rats. J Neurochem 37:1548–1556

    Article  PubMed  CAS  Google Scholar 

  • Levtchenko E, Graaf-Hess A, Wilmer M, van der Heuvel L, Monnens L, Blom H (2005) Altered status of glutathione and its metabolites in cystinotic cells. Nephrol Dial Transplant 20:1828–1832

    Article  PubMed  CAS  Google Scholar 

  • Levtchenko EN, Wilmer MJG, Janssen AJM, Koenderink JB, Visch AJ, Willems PH, Graaf-Hess A, Blom HJ, van den Heuvel LP, Monnens LA (2006) Decreased ATP content and intact mitochondrial energy generating capacity in human cystinotic fibroblasts. Pediatr Res 59:287–292

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Nichols SL, Press GA, Schneider JA, Trauner DA (1990) Cortical atrophy and cognitive performance in infantile nephropathic cystinosis. Pediatr Neurol 6:379–381

    Article  PubMed  CAS  Google Scholar 

  • Park MA, Thoene JG (2005) Potential role of apoptosis in development of the cystinotic phenotype. Pediatr Nephrol 20:441–446

    Article  PubMed  Google Scholar 

  • Park MA, Helip-Wooley A, Thoene J (2002) Lysosomal cystine storage increases apoptosis in cultured human fibroblasts and renal proximal tubule epithelial cells. J Am Soc Nephrol 13:2878–2887

    Article  PubMed  CAS  Google Scholar 

  • Park MA, Pejovic V, Kerisit KG, Junius S, Thoene JG (2006) Increased apoptosis in cystinotic fibroblasts and renal proximal tubule epithelial cells results from cysteinylation of protein kinase C (delta). J Am Soc Nephrol 17:3167–3175

    Article  PubMed  CAS  Google Scholar 

  • Patrick AD (1965) Deficiencies of SH-dependent enzymes in cystinosis. Clin Sci 28:427–443

    PubMed  CAS  Google Scholar 

  • Salmon RF, Baum M (1990) Intracellular cystine loading inhibits transport in the rabbit proximal convoluted tubule. J Clin Invest 85:340–344

    Article  PubMed  CAS  Google Scholar 

  • Schneider JA, Schulman JD (1983) Cystinosis. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS (eds) The metabolic basis of inherited disease, 5th edn. McGraw-Hill, New York, pp 1844–18566

    Google Scholar 

  • Schneider JA, Clark KF, Greene AA, Reisch JS, Markello TC, Gahl WA, Thoene JG, Noonan PK, Berry KA (1983) Recent advances in the treatment of cystinosis. J Inher Metab Dis 18:387–397

    Article  Google Scholar 

  • Schulze A (2003) Creatine deficiency syndromes. Mol Cell Biochem 244:143–150

    Article  PubMed  CAS  Google Scholar 

  • Sestili P, Martinelli C, Bravi G, Piccoli G, Curci R, Battistelli M, Falcieri E, Agostini D, Gioacchini AM, Stocchi V (2006) Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radic Biol Med 40:837–849

    Article  PubMed  CAS  Google Scholar 

  • Spear GS, Gubler MC, Habib R, Broyer M (1989) Dark cells of cystinosis: occurrence in renal allografts. Hum Pathol 20:472–476

    Article  PubMed  CAS  Google Scholar 

  • Sullivan MX, Hess WC, Howard HW (1942) The quantitative estimation of both cystine and cystein in mixture. J Biol Chem 145:621–624

    CAS  Google Scholar 

  • Town M, Jean G, Cherqui S, Attard M, Forestier L, Whitmore SA, Callen DF, Gribouval O, Broyer M, Bates GP, van’t Hoff W, Antignac C (1998) A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat Genet 18:319–324

    Article  PubMed  CAS  Google Scholar 

  • Vogel DG, Malekzadeh MH, Cornford ME, Schneider JA, Shields WD, Vinters HV (1990) Central nervous system involvement in nephropathic cystinosis. J Neuropathol Exp Neurol 49:591–599

    Article  CAS  Google Scholar 

  • Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281:21–40

    PubMed  CAS  Google Scholar 

  • Wilmer MJ, de Graaf-Hess A, Blom HJ, Dijkman HB, Monnens LA, van den Heuvel LP, Levtchenko EN (2005) Elevated oxidized glutathione in cystinotic proximal tubular epithelial cells. Biochem Biophys Res Commun 337:610–614

    Article  PubMed  CAS  Google Scholar 

  • Zahler WL, Cleland WW (1968) A specific and sensitive assay for disulfides. J Biol Chem 243:716–719

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from Conselho Nacional de Desenvolvimento Científico e tecnológico (CNPq-Brazil), Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS, RS-Brazil), Programa de Núcleos de Excelência (PRONEX-CNPq /FAPERGS-Brazil) and Rede instituto Brasileiro de Neurociências (FINEP /IBN-Net no. 01.06.0842-00)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clovis Milton Duval Wannmacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rech, V.C., Feksa, L.R., Fleck, R.M.M. et al. Cysteamine prevents inhibition of thiol-containing enzymes caused by cystine or cystine dimethylester loading in rat brain cortex. Metab Brain Dis 23, 133–145 (2008). https://doi.org/10.1007/s11011-008-9081-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-008-9081-x

Keywords

Navigation