Skip to main content
Log in

Metabolism of [1,6-13C]Glucose and [U-13C]Glutamine and Depolarization Induced GABA Release in Superfused Mouse Cerebral Cortical Mini-slices

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Mouse cerebral cortical mini-slices were used in a superfusion system to monitor depolarization-induced (55 mM K+) release of preloaded [2,3-3H]GABA and to investigate the biosynthesis of glutamate, GABA and aspartate during physiological and depolarizing (55 mM K+) conditions from either [1,6-13C]glucose or [U-13C]glutamine. Depolarization-induced GABA release could be reduced (50%) by the GABA transport inhibitor tiagabine (25 μM) or by replacing Ca2+ with Co2+. In the presence of both tiagabine and Co2+ (1 mM), release was abolished completely. The release observed in the presence of 25 μM tiagabine thus represents vesicular release. Superfusion in the presence of [1,6-13C]glucose led to considerable labeling in the three amino acids, the labeling in glutamate and aspartate being increased after depolarization. This condition had no effect on GABA labeling. For all three amino acids, the distribution of label in the different carbon atoms revealed on increased tricarboxylic acid (TCA) activity during depolarization. When [U-13C]glutamine was used as substrate, labeling in glutamate was higher than that in GABA and aspartate and the fraction of glutamate and aspartate being synthesized by participation of the TCA cycle was increased by depolarization, an effect not seen for GABA. However, GABA synthesis reflected TCA cycle involvement to a much higher extent than for glutamate and aspartate. The results show that this preparation of brain tissue with intact cellular networks is well suited to study metabolism and release of neurotransmitter amino acids under conditions mimicking neural activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

KR:

Krebs–Ringer

TCA:

Tricarboxylic acid

References

  1. Waagepetersen HS, Sonnewald U, Larsson OM, Schousboe A (1999) Synthesis of vesicular GABA from glutamine involves TCA cycle metabolism in neocortical neurons. J Neurosci Res 57:342–349

    Article  PubMed  CAS  Google Scholar 

  2. Waagepetersen HS, Sonnewald U, Gegelashvili G, Larsson OM, Schousboe A (2001) Metabolic distinction between vesicular and cytosolic GABA in cultured GABAergic neurons using 13C MRS. J Neurosci Res 63:347–355

    Article  PubMed  CAS  Google Scholar 

  3. Machiyama Y, Balazs R, Richter D (1967) Effect of K+-stimulation on GABA metabolism in brain slices in vitro. J Neurochem 14:591–594

    Article  PubMed  CAS  Google Scholar 

  4. López-Colomé AM, Tapia R, Salceda R, Pasantes-Morales H (1978) K+-Stimulated release of labeled γ-aminobutyrate, glycine and taurine in slices of several regions of rat central nervous system. Neuroscience 3:1069–1074

    Article  PubMed  Google Scholar 

  5. Drejer J, Honoré T, Schousboe A (1987) Excitatory amino acid induced release of 3H-GABA from cultured mouse cerebral cortex interneurons. J Neurosci 7:2910–2916

    PubMed  CAS  Google Scholar 

  6. Saransaari P, Oja SS (1992) Release of GABA and taurine from brain-slices. Prog Neurobiol 38:455–482

    Article  PubMed  CAS  Google Scholar 

  7. Saransaari P, Oja SS (1993) Characteristics of GABA release modified by glutamate receptors in mouse hippocampal slices. Neurochem Int 43:453–459

    Article  CAS  Google Scholar 

  8. Belhage B, Hansen GH, Schousboe A (1993) Depolarization by K+ and glutamate activates different neurotransmitter release mechanisms in GABAergic neurons: vesicular versus non-vesicular release of GABA. Neuroscience 54:1019–1034

    Article  PubMed  CAS  Google Scholar 

  9. Waagepetersen HS, Sonnewald U, Larsson OM, Schousboe A (2000) Compartmentation of TCA cycle metabolism in cultured neocortical neurons revealed by 13C MR spectroscopy. Neurochem Int 36:349–358

    Article  PubMed  CAS  Google Scholar 

  10. Palaiologos G, Hertz L, Schousboe A (1988) Evidence that aspartate amino transferase activity and ketodicarboxylate carrier function are essential for biosynthesis of transmitter glutamate. J Neurochem 51:317–320

    Article  PubMed  CAS  Google Scholar 

  11. Timmermann DB, Lund TM, Belhage B, Schousboe A (2001) Localization and function of voltage dependent calcium channels in cultured neocortical neurons. Int J Dev Neurosci 19:1–10

    Article  PubMed  CAS  Google Scholar 

  12. Geddes JW, Wood JD (1984) Changes in the amino acid content of nerve endings (synaptosomes) induced by drugs that alter the metabolism of glutamate and gamma-aminobutyric acid. J Neurochem 42:16–24

    Article  PubMed  CAS  Google Scholar 

  13. Bak LK, Schousboe A, Sonnewald U, Waagepetersen HS (2006) Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons. J Cereb Blood Flow Metab 26:1285–1297

    Article  PubMed  CAS  Google Scholar 

  14. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  15. Waagepetersen HS, Bakken IJ, Larsson OM, Sonnewald U, Schousboe A (1998) Comparison of lactate and glucose metabolism in cultured neocortical neurons and astrocytes using 13C NMR spectroscopy. Dev Neurosci 20:310–320

    Article  PubMed  CAS  Google Scholar 

  16. Bræstrup C, Nielsen EB, Sonnewald U, Knutsen LJS, Andersen KE, Jansen JA, Frederiksen K, Andersen PH, Mortensen A, Suzdak PD (1990) (R)-N-[4,4-Bis(3-methyl-2-thienyl) but-3-en-1-yl]nipecotic acid binds with high affinity to the brain γ-aminobutyric acid uptake carrier. J Neurochem 54:639–647

    Article  PubMed  Google Scholar 

  17. Bernath S, Zigmond MJ (1988) Characterization of [3H]GABA release from striatal slices: evidence for a calcium-independent process via the GABA uptake system. Neuroscience 27:563–570

    Article  PubMed  CAS  Google Scholar 

  18. Bernath S (1992) Calcium-independent release of amino acid neurotransmitters: fact or artifact? Prog Neurobiol 38:57–91

    Article  PubMed  CAS  Google Scholar 

  19. Schousboe A (1981) Transport and metabolism of glutamate and GABA in neurons and glial cells. Int Rev Neurobiol 22:1–45

    Article  PubMed  CAS  Google Scholar 

  20. Larsson OM, Drejer J, Kvamme E, Svenneby G, Hertz L, Schousboe A (1985) Ontogenetic development of glutamate and GABA metabolizing enzymes in cultured cerebral cortex interneurons and in cerebral cortex in vivo. Int J Dev Neurosci 3:177–185

    Article  CAS  Google Scholar 

  21. Mason GF, Gruetter R, Rothman DL, Behar KL, Shulman RG, Novotny EJ (1995) Simultaneous determination of the rates of the TCA cycle, glucose utilization, alpha-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. J Cereb Blood Flow Metab 15:12–25

    PubMed  CAS  Google Scholar 

  22. Balazs R, Machiyama Y, Hammond BJ, Julian T, Richter D (1970) The operation of the gamma-aminobutyrate bypath of the tricarboxylic acid cycle in brain tissue in vitro. Biochem J 116:445–461

    PubMed  CAS  Google Scholar 

  23. Machiyama Y, Balazs R, Hammond BJ, Julian T, Richter D (1970) Metabolism of gamma-aminobutyrate and glucose in potassium ion-stimulated brain tissue in-vitro. Biochem J 116:469–481

    PubMed  CAS  Google Scholar 

  24. Sonnewald U, Westergaard N, Krane J, Unsgård G, Petersen SB, Schousboe A (1991) First direct demonstration of preferential release of citrate from astrocytes using [13C]NMR spectroscopy of cultured neurons and astrocytes. Neurosci Lett 128:235–239

    Article  PubMed  CAS  Google Scholar 

  25. Waagepetersen HS, Sonnewald U, Larsson OM, Schousboe A (2000) A possible role of alanine for ammonia transfer between astrocytes and glutamatergic neurons. J Neurochem 75:471–479

    Article  PubMed  CAS  Google Scholar 

  26. Bouzier-Sore AK, Voisin P, Canioni P, Magistretti PJ, Pellerin L (2003) Lactate is a preferential oxidative energy substrate over glucose for neurons in culture. J Cereb Blood Flow Metab 23:1298–1306

    Article  PubMed  CAS  Google Scholar 

  27. Peng L, Zhang X, Hertz L (1994) High extracellular potassium concentrations stimulate oxidative metabolism in a glutamatergic neuronal culture and glycolysis in cultured astrocytes but have no stimulatory effect in a GABAergic neuronal culture. Brain Res 663:168–172

    Article  PubMed  CAS  Google Scholar 

  28. Berl S, Clarke DD (1983) The metabolic compartmentation concept. In: Hertz L, Kvamme E, McGeer EG, Schousboe A (eds) Glutamine glutamate and GABA in the central nervous system. Alan R Liss Inc., New York, pp 205–217

    Google Scholar 

  29. Sonnewald U, Westergaard N, Schousboe A, Svendsen JS, Unsgaard G, Petersen SB (1993) Direct demonstration by [13C]NMR spectroscopy that glutamine from astrocytes is a precursor for GABA synthesis in neurons. Neurochem Int 22:19–29

    Article  PubMed  CAS  Google Scholar 

  30. Sonnewald U, Westergaard N, Hassel B, Müller TB, Unsgård G, Fonnum F, Hertz L, Schousboe A, Petersen SB (1993) NMR Spectroscopic studies of 13C acetate and 13C glucose metabolism in neocortical astrocytes: evidence for mitochondrial heterogeneity. Dev Neurosci 15:351–358

    Article  PubMed  CAS  Google Scholar 

  31. McKenna MC, Tildon JT, Stevenson JH, Hopkins IB (1994) Energy-metabolism in cortical synaptic terminals from weanling and mature rat-brain—evidence for multiple compartments of tricarboxylic-acid cycle activity. Dev Neurosci 16:291–300

    Article  PubMed  CAS  Google Scholar 

  32. Westergaard N, Sonnewald U, Petersen SB, Schousboe A (1995) Glutamate and glutamine metabolism in cultured GABAergic neurons studied by 13C NMR spectroscopy: evidence for compartmentation and mitochondrial heterogeneity. Neurosci Lett 185:24–28

    Article  PubMed  CAS  Google Scholar 

  33. Waagepetersen HS, Qu H, Sonnewald U, Shimamoto K, Schousboe A (2005) Role of glutamine and neuronal glutamate uptake in glutamate homeostasis and synthesis during vesicular release in cultured glutamatergic neurons. Neurochem Int 47:92–102

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The expert secretarial assistance of Ms Hanne Danø and the skilful technical assistance of Ms Ann Lene Vigh are highly appreciated. The experimental work has been supported by grants from the Danish Medical Research Council (22-04-0314) and the Lundbeck, Hørslev and Novo Nordisk Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Schousboe.

Additional information

Special issue article in honor of Dr. Ricardo Tapia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waagepetersen, H.S., Døring, S. & Schousboe, A. Metabolism of [1,6-13C]Glucose and [U-13C]Glutamine and Depolarization Induced GABA Release in Superfused Mouse Cerebral Cortical Mini-slices. Neurochem Res 33, 1610–1617 (2008). https://doi.org/10.1007/s11064-008-9695-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9695-8

Keywords

Navigation