Skip to main content
Log in

Transmitter self-regulation by extracellular glutamate in fresh human cortical slices

  • Translational Neurosciences - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Glutamate is thought to be the most important excitatory neurotransmitter in the CNS, while glutamine predominantly serves as a precursor and metabolite in the glutamate–glutamine cycle. To verify the interaction between intrinsic extracellular glutamate, y-aminobutyric acid (GABA) levels and glial glutamine outflow in human tissue, fresh brain slices from human frontal cortex were incubated in superfusion chambers in vitro. Human neocortical tissue was obtained during surgical treatment of subcortical brain tumors. For superfusion experiments, the white matter was separated and discarded from the gray matter, which finally contained all six neocortical layers. Outflows of endogenous glutamate, GABA and glutamine were established after a 40-min washout period and amounts were simultaneously quantified after two-phase derivatization by high-performance liquid chromatography with electrochemical detection. Under basal conditions, amounts of glutamate could be found 20-fold in comparison to the inhibitory neurotransmitter GABA, whereas this excitatory predominance markedly declined after veratridine-induced activation. The basal glutamate:glutamine ratio of extracellular levels was approximately 1:2. Blockade or activation of the voltage-gated sodium channel by tetrodotoxin or veratridine significantly modulated glutamate levels, but the glutamate:glutamine ratio was nearly constant with 1:2. When the EAAT blocker TBOA was employed, glutamine remained nearly unchanged whereas glutamate significantly enhanced. These results led us to suggest that glutamine release through glial SN1 is related to EAAT activity that can be modulated by intrinsic extracellular glutamate in human cortical slices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

aCSF:

Artificial cerebrospinal fluid

EAAT:

Excitatory amino acid transporter

GABA:

γ-Aminobutyric acid

HPLC:

High-performance liquid chromatography

MSO:

l-Methionine sulfoximine

SEM:

Standard error of the mean

SN 1:

Glial system N glutamine transporter

TBOA:

dl-Threo-β-benzyloxyaspartic acid

TTX:

Tetrodotoxin

VER:

Veratridine

vgNaCh:

Voltage-gated sodium channel

References

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    Article  PubMed  CAS  Google Scholar 

  • Attwell D, Barbour B, Szatkowski M (1993) Nonvesicular release of neurotransmitter. Neuron 11:401–407

    Article  PubMed  CAS  Google Scholar 

  • Behar KL, Rothman DL (2001) In vivo nuclear magnetic resonance studies of glutamate-gamma-aminobutyric acid-glutamine cycling in rodent and human cortex: the central role of glutamine. J Nutr 131:2498S–2504S discussion 2523S–4S

    PubMed  CAS  Google Scholar 

  • Benarroch EE (2005) Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc 80:1326–1338

    Article  PubMed  CAS  Google Scholar 

  • Benjamin AM, Quastel JH (1972) Locations of amino acids in brain slices from the rat. Tetrodotoxin-sensitive release of amino acids. Biochem J 128:631–646

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bowery NG, Bettler B, Froestl W, Gallagher JP, Marshall F, Raiteri M, Bonner TI, Enna SJ (2002) International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: structure and function. Pharmacol Rev 54:247–264

    Article  PubMed  CAS  Google Scholar 

  • Bröer A, Deitmer JW, Bröer S (2004) Astroglial glutamine transport by system N is upregulated by glutamate. Glia 48:298–310

    Article  PubMed  Google Scholar 

  • Cavus I, Kasoff WS, Cassaday MP, Jacob R, Gueorguieva R, Sherwin RS, Krystal JH, Spencer DD, Abi-Saab WM (2005) Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann Neurol 57:226–235

    Article  PubMed  CAS  Google Scholar 

  • Cheung AFP, Pollen AA, Tavare A, DeProto J, Molnár Z (2007) Comparative aspects of cortical neurogenesis in vertebrates. J Anat 211:164–176

    Article  PubMed  PubMed Central  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  • Del Arco A, Segovia G, Fuxe K, Mora F (2003) Changes in dialysate concentrations of glutamate and GABA in the brain: an index of volume transmission mediated actions? J Neurochem 85:23–33

    Article  PubMed  Google Scholar 

  • Dou W, Palomero-Gallagher N, van Tol M-J, Kaufmann J, Zhong K, Bernstein H-G, Heinze H-J, Speck O, Walter M (2013) Systematic regional variations of GABA, glutamine, and glutamate concentrations follow receptor fingerprints of human cingulate cortex. J Neurosci Off J Soc Neurosci 33:12698–12704

    Article  CAS  Google Scholar 

  • Druga R (2009) Neocortical inhibitory system. Folia Biol (Praha) 55:201–217

    CAS  Google Scholar 

  • Feuerstein TJ, Rossner R, Schumacher M (1997) How to express an effect mean as percentage of a control mean? J Pharmacol Toxicol Methods 37:187–190

    Article  PubMed  CAS  Google Scholar 

  • Jursky F, Tamura S, Tamura A, Mandiyan S, Nelson H, Nelson N (1994) Structure, function and brain localization of neurotransmitter transporters. J Exp Biol 196:283–295

    PubMed  CAS  Google Scholar 

  • Kammerer M, Rassner MP, Freiman TM, Feuerstein TJ (2011) Effects of antiepileptic drugs on GABA release from rat and human neocortical synaptosomes. Naunyn Schmiedebergs Arch Pharmacol 384:47–57

    Article  PubMed  CAS  Google Scholar 

  • Kaura S, Bradford HF, Young AM, Croucher MJ, Hughes PD (1995) Effect of amygdaloid kindling on the content and release of amino acids from the amygdaloid complex: in vivo and in vitro studies. J Neurochem 65:1240–1249

    Article  PubMed  CAS  Google Scholar 

  • Levi G, Gallo V, Raiteri M (1980) A reevaluation of veratridine as a tool for studying the depolarization-induced release of neurotransmitters from nerve endings. Neurochem Res 5:281–295

    Article  PubMed  CAS  Google Scholar 

  • Li T, Qadri F, Moser A (2004) Neuronal electrical high frequency stimulation modulates presynaptic GABAergic physiology. Neurosci Lett 371:117–121

    Article  PubMed  CAS  Google Scholar 

  • Li T, Thümen A, Moser A (2006) Modulation of a neuronal network by electrical high frequency stimulation in striatal slices of the rat in vitro. Neurochem Int 48:83–86

    Article  PubMed  CAS  Google Scholar 

  • Mantovani M, Van Velthoven V, Fuellgraf H, Feuerstein TJ, Moser A (2006) Neuronal electrical high frequency stimulation enhances GABA outflow from human neocortical slices. Neurochem Int 49:347–350

    Article  PubMed  CAS  Google Scholar 

  • Mantovani M, Moser A, Haas CA, Zentner J, Feuerstein TJ (2009) GABA(A) autoreceptors enhance GABA release from human neocortex: towards a mechanism for high-frequency stimulation (HFS) in brain? Naunyn Schmiedebergs Arch Pharmacol 380:45–58

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Lozada Z, Guillem AM, Flores-Méndez M, Hernández-Kelly LC, Vela C, Meza E, Zepeda RC, Caba M, Rodríguez A, Ortega A (2013) GLAST/EAAT1-induced glutamine release via SNAT3 in Bergmann glial cells: evidence of a functional and physical coupling. J Neurochem 125:545–554

    Article  PubMed  Google Scholar 

  • Neusch C, Böhme V, Riesland N, Althaus M, Moser A (2000) The dopamine D2 receptor agonist alpha-dihydroergocryptine modulates voltage-gated sodium channels in the rat caudate-putamen. J Neural Transm Vienna Austria 1996(107):531–541

    Article  Google Scholar 

  • Olsen RW, Sieghart W (2008) International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update Pharmacol Rev 60:243–260

    Article  CAS  Google Scholar 

  • Palmada M, Centelles JJ (1998) Excitatory amino acid neurotransmission. Pathways for metabolism, storage and reuptake of glutamate in brain. Front Biosci J Virtual Libr 3:d701–d718

    CAS  Google Scholar 

  • Patel AB, de Graaf RA, Mason GF, Rothman DL, Shulman RG, Behar KL (2005) The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc Natl Acad Sci USA 102:5588–5593

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Petroff OAC, Errante LD, Rothman DL, Kim JH, Spencer DD (2002) Glutamate-glutamine cycling in the epileptic human hippocampus. Epilepsia 43:703–710

    Article  PubMed  CAS  Google Scholar 

  • Rae C, Hare N, Bubb WA, McEwan SR, Bröer A, McQuillan JA, Balcar VJ, Conigrave AD, Bröer S (2003) Inhibition of glutamine transport depletes glutamate and GABA neurotransmitter pools: further evidence for metabolic compartmentation. J Neurochem 85:503–514

    Article  PubMed  CAS  Google Scholar 

  • Santos MS, Rodriguez R, Carvalho AP (1992) Effect of depolarizing agents on the Ca(2 +)-independent and Ca(2 +)-dependent release of [3H]GABA from sheep brain synaptosomes. Biochem Pharmacol 44:301–308

    Article  PubMed  CAS  Google Scholar 

  • Schousboe A (2003) Role of astrocytes in the maintenance and modulation of glutamatergic and GABAergic neurotransmission. Neurochem Res 28:347–352

    Article  PubMed  CAS  Google Scholar 

  • Shank RP, Campbell GL (1984) Glutamine, glutamate, and other possible regulators of alpha-ketoglutarate and malate uptake by synaptic terminals. J Neurochem 42:1162–1169

    Article  PubMed  CAS  Google Scholar 

  • Shipp S (2007) Structure and function of the cerebral cortex. Curr Biol CB 17:R443–R449

    Article  CAS  Google Scholar 

  • Szerb JC (1983) The release of [3H]GABA formed from [3H]glutamate in rat hippocampal slices: comparison with endogenous and exogenous labeled GABA. Neurochem Res 8:341–351

    Article  PubMed  CAS  Google Scholar 

  • Tabata H, Yoshinaga S, Nakajima K (2012) Cytoarchitecture of mouse and human subventricular zone in developing cerebral neocortex. Exp Brain Res Exp Hirnforsch Expérimentation Cérébrale 216:161–168

    Article  Google Scholar 

  • Uwechue NM, Marx M-C, Chevy Q, Billups B (2012) Activation of glutamate transport evokes rapid glutamine release from perisynaptic astrocytes. J Physiol 590:2317–2331

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Waagepetersen HS, Døring S, Schousboe A (2008) Metabolism of [1,6-(13)C]glucose and [U-(13)C]glutamine and depolarization induced GABA release in superfused mouse cerebral cortical mini-slices. Neurochem Res 33:1610–1617

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Prauss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prauss, K., Varatharajan, R., Joseph, K. et al. Transmitter self-regulation by extracellular glutamate in fresh human cortical slices. J Neural Transm 121, 1321–1327 (2014). https://doi.org/10.1007/s00702-014-1215-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-014-1215-1

Keywords

Navigation