Müller Glia as an Active Compartment Modulating Nervous Activity in the Vertebrate Retina: Neurotransmitters and Trophic Factors


Müller cells represent the main type of glia present in the retina interacting with most, if not all neurons in this tissue. Müller cells have been claimed to function as optic fibers in the retina delivering light to photoreceptors with minimal distortion and low loss [Franze et al (2007) Proc Natl Acad Sci 104:8287–8292]. Most of the mediators found in the brain are also detected in the retinal tissue, and glia cells are active players in the synthesis, release, signaling and uptake of major mediators of synaptic function. Müller glia trophic factors may regulate many different aspects of neuronal circuitry during synaptogenesis, differentiation, neuroprotection and survival of photoreceptors, Retinal Ganglion Cells (RGCs) and other targets in the retina. Here we review the role of several transmitters and trophic factors that participate in the neuron-glia loop in the retina.

This is a preview of subscription content, log in to check access.

Fig. 1



Adenylate cyclase


Brain derived neurotrophic factor


Cyclic AMP


cAMP-responsive element-binding protein


Central nervous system


Ciliary neurotrophic factor


Dopa decarboxylase




Dopamine transporter


Basic fibroblast growth factor


Gamma amino butiric acid


GABA transporter


Glutamate/aspartate transporter


Nerve growth factor


(N-methyl d-aspartate)


Neurotrophin 3


Pituitary adenylyl cyclase activating polypeptide


Retinal ganglion cells


Serine racemase


Tyrosine hydroxylase


  1. 1.

    Sarthy V, Ripps H (2001) Structural organization of retinal glia. The Retinal Müller Cell: Structure and Function. Perspectives in Vision Research, Kluwer Academic, pp 1–33

  2. 2.

    Bringmann A, Pannicke T, Grosche J, et al (2006) Müller cells in the healthy and diseased retina. Prog Retinal Eye Res 25:397–424

    CAS  Google Scholar 

  3. 3.

    Robinson SR, Dreher Z (1990) Müller cells in adult rabbit retinae: morphology, distribution and implications for function and development. J Comp Neurol 292:178–192

    PubMed  CAS  Google Scholar 

  4. 4.

    Franze K, Grosche J, Skatchkov SN et al (2007) Müller cells are living optical fibers in the vertebrate retina. Proc Natl Acad Sci 104:8287–8292

    PubMed  CAS  Google Scholar 

  5. 5.

    Newman E, Reichenbach A (1996) The Müller cell: a functional element of the retina. Trends Neurosci 19:307–312

    PubMed  CAS  Google Scholar 

  6. 6.

    Prada C, Puga J, Pérez-Méndez L et al (1991) Spatial and temporal patterns of neurogenesis in the chick retina. Eur J Neurosci 3:559–569

    PubMed  Google Scholar 

  7. 7.

    Fischer AJ, Reh TA (2003) Potential of Müller glia to become neurogenic retinal progenitor cells. Glia 43:70–76

    PubMed  Google Scholar 

  8. 8.

    Fisher AJ, Reh TA (2001) Müller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci 4:247–252

    Google Scholar 

  9. 9.

    Fischer AJ, McGuire CR, Dierks BD et al (2002) Insulin and fibroblast growth factor 2 activate a neurogenic program in Müller glia of the chicken retina. J Neurosci 22:9387–9398

    PubMed  CAS  Google Scholar 

  10. 10.

    Harada T, Harada C, Nakayama N et al (2000) Modification of glial-neuronal cell interactions prevents photoreceptor apoptosis during light-induced retinal degeneration. Neuron 26:53–541

    Google Scholar 

  11. 11.

    Harada T, Harada C, Kohsaka S et al (2002) Microglia–Müller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration. J Neurosci 22:9228–9236

    PubMed  CAS  Google Scholar 

  12. 12.

    Seki M, Tanaka T, Sakai Y et al (2005) Müller cells as a source of brain-derived neurotrophic factor in the retina: noradrenaline upregulates brain-derived neurotrophic factor levels in cultured rat Müller cells. Neurochem Res 30:1163–1170

    PubMed  CAS  Google Scholar 

  13. 13.

    Araque A (2006) Astrocyte-neuron signaling in the brain-implications for disease. Curr Opin Investig Drugs 7:619–624

    PubMed  CAS  Google Scholar 

  14. 14.

    Taylor S, Srinivasan B, Wordinger RJ et al (2003) Glutamate stimulates neurotrophin expression in cultured Müller cells. Mol Brain Res 111:189–197

    PubMed  CAS  Google Scholar 

  15. 15.

    Wahlin KJ, Campochiaro PA, Zack DJ et al (2000) Neurotrophic factors cause activation of intracellular signaling pathways in Müller cells and other cells of the inner retina, but not photoreceptors. Invest Ophthalmol Vis Sci 41:927–936

    PubMed  CAS  Google Scholar 

  16. 16.

    Raju TR, Bennett MR (1986) Retinal ganglion cell survival requirements: a major but transient dependence on Müller glia during development. Brain Res 383:165–176

    PubMed  CAS  Google Scholar 

  17. 17.

    Armson PF, Bennett MR, Raju TR (1997) Retinal ganglion-cell survival and neurite regeneration requirements—the change from Müller cell-dependence to superior colliculi dependence during development. Dev Brain Res. 32:207–216

    Google Scholar 

  18. 18.

    Garcia M, Forster V, Hicks D et al (2002) Effects of Müller glia on cell survival and neuritogenesis in adult porcine retina in vitro. Invest Ophthalmol Vis Sci 43:3735–3743

    PubMed  Google Scholar 

  19. 19.

    De Mello FG, De Mello MCF, Hudson R et al (1990) Selective expression of factors preventing cholinergic dedifferentiation. J Neurochem 54:886–892

    Google Scholar 

  20. 20.

    Belmonte KE, McKinnon LA, Nathanson NM (2000) Developmental expression of muscarinic acetylcholine receptors in chick retina: selective induction of M2 muscarinic receptor expression in ovo by a factor secreted by Müller glial cells. J Neurosci 20:8417–8425

    PubMed  CAS  Google Scholar 

  21. 21.

    Reis RAM, Silva MCC, Loureiro dos Santos NE et al (2002) Sympathetic neuronal survival induced by retinal trophic factors. J Neurobiol 50:13–23

    PubMed  CAS  Google Scholar 

  22. 22.

    Chakrabarti S, Sima AA, Lee J et al (1990) Nerve growth factor (NGF), proNGF and NGF receptor-like immunoreactivity in BB rat retina. Brain Res 523:11–15

    PubMed  CAS  Google Scholar 

  23. 23.

    Oku H, Ikeda T, Honma Y et al (2002) Gene expression of neurotrophins and their high-affinity Trk receptors in cultured human Müller cells. Ophthalmic Res 34:38–42

    PubMed  CAS  Google Scholar 

  24. 24.

    Vecino E, Caminos E, Ugarte M et al (1998) Immunohistochemical distribution of neurotrophins and their receptors in the rat retina and the effects of ischemia and reperfusion. Gen Pharmacol 30:305–314

    PubMed  CAS  Google Scholar 

  25. 25.

    Garcia M, Vecino E (2003) Role of Müller glia in neuroprotection and regeneration in the retina. Histol Histopathol 18:1205–1218

    PubMed  CAS  Google Scholar 

  26. 26.

    Rocha M, Martins RA, Linden R (1999) Activation of NMDA receptors protects against glutamate neurotoxicity in the retina: evidence for the involvement of neurotrophins. Brain Res 827:79–92

    PubMed  CAS  Google Scholar 

  27. 27.

    Nakazawa, Tamai M, Mori N (2002) Brain-derived neurotrophic factor prevents axotomized retinal ganglion cell death through MAPK and PI3K signaling pathways. Invest Ophthalmol Vis Sci 43:3319–3326

    PubMed  Google Scholar 

  28. 28.

    Gao H, Hollyfield JG (1992) Basic fibroblast growth factor (bFGF) immunolocalization in the rodent outer retina demonstrated with an anti-rodent bFGF antibody. Brain Res 585:355–360

    PubMed  CAS  Google Scholar 

  29. 29.

    Cao W, Wen R, Li F et al (1997) Induction of basic fibroblast growth factor mRNA by basic fibroblast growth factor in Müller cells. Invest Ophthalmol Vis Sci 38:1358–1366

    PubMed  CAS  Google Scholar 

  30. 30.

    Cao W, Wen R, Li F, et al (1997) Mechanical injury increases bFGF and CNTF mRNA expression in the mouse retina. Exp Eye Res 65:241–248

    PubMed  CAS  Google Scholar 

  31. 31.

    Neophytou C, Vernallis AB, Smith A et al (1997) Müller-cell-derived leukaemia inhibitory factor arrests rod photoreceptor differentiation at a postmitotic pre-rod stage of development. Development 124:2345–2354

    PubMed  CAS  Google Scholar 

  32. 32.

    Seki T, Hinohara Y, Taki C et al (2006) PACAP stimulates the release of interleukin-6 in cultured rat Müller cells. Ann NY Acad Sci 1070:535–539

    PubMed  CAS  Google Scholar 

  33. 33.

    Anderson DH, Guerin CJ, Hageman GS et al (1995) Distribution of transforming growth factor-beta isoforms in the mammalian retina. J Neurosci Res 42:63–79

    PubMed  CAS  Google Scholar 

  34. 34.

    Meyer-Franke A, Kaplan MR, Pfrieger FW et al (1995) Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15:805–819

    PubMed  CAS  Google Scholar 

  35. 35.

    Peterson WM, Wang Q, Tzekova R et al (2000) Ciliary neurotrophic factor and stress stimuli activate the Jak-STAT pathway in retinal neurons and glia. J Neurosci 20:4081–4090

    PubMed  CAS  Google Scholar 

  36. 36.

    Kawasaki A, Otori Y, Barnstable CJ (2000) Müller cell protection of rat retinal ganglion cells from glutamate and nitric oxide neurotoxicity. Invest Ophthalmol Vis Sci 41:3444–3450

    PubMed  CAS  Google Scholar 

  37. 37.

    Walsh N, Valter K, Stone J (2001) Cellular and subcellular patterns of expression of bFGF and CNTF in the normal and light stressed adult rat retina. Exp Eye Res 72:495–501

    PubMed  CAS  Google Scholar 

  38. 38.

    Linden R, Martins RA, Silveira MS (2005) Control of programmed cell death by neurotransmitters and neuropeptides in the developing mammalian retina. Prog Retin Eye Res 24:457–491

    PubMed  CAS  Google Scholar 

  39. 39.

    Malchow RP, Qian H, Ripps H (1989) γ-Aminobutyric acid (GABA)-induced currents of skate Müller (glial) cells are mediated by neuronal-like GABAA receptors. Proc Natl Acad Sci USA 86:4326–4330

    PubMed  CAS  Google Scholar 

  40. 40.

    Biedermann B, Bringmann A, Reichenbach A (2002) High-affinity GABA uptake in retinal glial (Müller) cells of the guinea pig: electrophysiological characterization, immunohistochemical localization, and modeling of efficiency. Glia 39:217–228

    PubMed  Google Scholar 

  41. 41.

    Kubrusly RC, da Cunha MC, Reis RA et al (2005) Expression of functional receptors and transmitter enzymes in cultured Müller cells. Brain Res 1038:141–149

    PubMed  CAS  Google Scholar 

  42. 42.

    Wakakura M, Utsunomiya-Kawasaki I, Ishikawa S (1998) Rapid increase in cytosolic calcium ion concentration mediated by acetylcholine receptors in cultured retinal neurons and Müller cells. Graefe’s Arch Clin Exp Ophthalmol 236:934–939

    CAS  Google Scholar 

  43. 43.

    Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they do. Glia 54:716–725

    PubMed  Google Scholar 

  44. 44.

    Mothet JP, Pollegioni L, Ouanounou G et al (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter d-serine. PNAS 102:5606–5611

    PubMed  CAS  Google Scholar 

  45. 45.

    Montana V, Malarkey EB, Verderio C et al (2006) Vesicular Transmitter Release from Astrocytes. Glia 54:700–715

    PubMed  Google Scholar 

  46. 46.

    Uchihori Y, Puro DG (1993) Glutamate as a neuron-to-glial signal for mitogenesis: role of glial N-methyl-d-aspartate receptors. Brain Res 613:212–220

    PubMed  CAS  Google Scholar 

  47. 47.

    Puro DG, Yuan JP, Sucher NJ (1996) Activation of NMDA receptor-channels in human retinal Müller glial cells inhibits inward-rectifying potassium currents. Vis Neurosci 13:319–326

    PubMed  CAS  Google Scholar 

  48. 48.

    López T, López-Colomé AM, Ortega A (1997) NMDA receptors in cultured radial glia. FEBS Lett 405:245–248

    PubMed  Google Scholar 

  49. 49.

    Lamas M, Lee-Rivera I, López-Colomé AM (2005) Cell-specific expression of N-methyl-d-aspartate receptor subunits in Müller glia and neurons from the chick retina. Invest Ophthalmol Vis Sci 46:3570–3577

    PubMed  Google Scholar 

  50. 50.

    López-Colomé AM, Ortega A, Romo-De-Vivar M (1993) Excitatory amino acid-induced phosphoinositide hydrolysis in Müller glia. Glia 9:127–135

    PubMed  Google Scholar 

  51. 51.

    López T, López-Colomé AM, Ortega A (1994) AMPA/KA receptor expression in radial glia. Neuroreport 5:504–506

    PubMed  Article  Google Scholar 

  52. 52.

    Wakakura M, Yamamoto N (1994) Cytosolic calcium transient increase through the AMPA/kainate receptor in cultured Müller cells. Vision Res 34:1105–1109

    PubMed  CAS  Google Scholar 

  53. 53.

    López T, López-Colomé AM, Ortega A (1998) Changes in GluR4 expression induced by metabotropic receptor activation in radial glia cultures. Mol Brain Res 58:40–46

    PubMed  Google Scholar 

  54. 54.

    López-Colomé AM, Ortega A (1997) Activation of p42 mitogen-activated protein kinase by glutamate in cultured radial glia. Neurochem Res 22:679–685

    PubMed  Google Scholar 

  55. 55.

    Rauen T, Wiessner M (2000) Fine tuning of glutamate uptake and degradation in glial cells: common transcriptional regulation of GLAST1 and GS. Neurochem Int 37:179–189

    PubMed  CAS  Google Scholar 

  56. 56.

    Harada T, Harada C, Watanabe M et al (1998) Functions of the two glutamate transporters GLAST and GLT-1 in the retina. PNAS 95:4663–4666

    PubMed  CAS  Google Scholar 

  57. 57.

    Mitani A, Tanaka K (2003) Functional changes of glial glutamate transporter GLT-1 during ischemia: an in vivo study in the hippocampal CA1 of normal mice and mutant mice lacking GLT-1. J Neurosci 23:7176–7182

    PubMed  CAS  Google Scholar 

  58. 58.

    Sarthy VP, Pignataro L, Pannicke T et al (2005) Glutamate transport by retinal Müller cells in glutamate/aspartate transporter-knockout mice. Glia 49:184–196

    PubMed  Google Scholar 

  59. 59.

    Carter-Dawson L, Crawford ML, Harwerth RS et al (2002) Vitreal glutamate concentration in monkeys with experimental glaucoma. Invest Ophthalmol Vis Sci 43:2633–2637

    PubMed  Google Scholar 

  60. 60.

    Gadea A, López E, López-Colomé AM (2004) Glutamate-Induced Inhibition of d-Aspartate Uptake in Müller Glia from the Retina. Neurochem Res. 29:295–304

    PubMed  CAS  Google Scholar 

  61. 61.

    Oliet SH, Mothet JP (2006) Molecular determinants of d-serine-mediated gliotransmission: from release to function. Glia. 54:726–737

    PubMed  Google Scholar 

  62. 62.

    Lamas M, Lee-Rivera I, Ramiırez M et al (2007) d-serine regulates CREB phosphorylation induced by NMDA receptor activation in Müller glia from the retina. Neurosci Lett doi:10.1016/j.neulet.2007.09.009

  63. 63.

    Stevens ER, Esguerra M, Kim PM et al (2003). d-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proc Natl Acad Sci 100:6789–6794

    PubMed  CAS  Google Scholar 

  64. 64.

    Calaza KC, Gardino PF, de Mello FG (2006) Transporter mediated GABA release in the retina: Role of excitatory amino acids and dopamine. Neurochem Int 49:769–777

    PubMed  CAS  Google Scholar 

  65. 65.

    Kanner BI (2006) Structure and Function of Sodium-coupled GABA and Glutamate Transporters. J Membr Biol 213:89–100

    PubMed  CAS  Google Scholar 

  66. 66.

    Schousboe A (2000) Pharmacological and functional characterization of astrocytic GABA transport: a short review. Neurochem Res 25:1241–1244

    PubMed  CAS  Google Scholar 

  67. 67.

    Clausen RP, Frølund B, Larsson et al (2006) A novel selective γ-aminobutyric acid transport inhibitor demonstrates a functional role for GABA transporter subtype GAT2/BGT-1 in the CNS. Neurochemistry Intern 48:637–642

    CAS  Google Scholar 

  68. 68.

    Schousboe A (2003) Role of astrocytes in the maintenance and modulation of glutamatergic and GABAergic neurotransmission. Neurochem Res 28:347–352

    PubMed  CAS  Google Scholar 

  69. 69.

    Wu Q, Wada M, Shimada A et al (2006) Functional characterization of Zn2(+)-sensitive GABA transporter expressed in primary cultures of astrocytes from rat cerebral cortex. Brain Res 1075:100–109

    PubMed  CAS  Google Scholar 

  70. 70.

    Sarthy PV (1983) Release of [3H]gamma-aminobutyric acid from glial (Müller) cells of the rat retina: effects of K+, veratridine, and ethylenediamine. J Neurosci 3:2494–3503

    PubMed  CAS  Google Scholar 

  71. 71.

    de Sampaio Schitine C, Kubrusly RCC, Reis RAM et al (2007) GABA uptake by purified avian Müller glia cells in culture. Neurotox Res 12:1–8

    Article  Google Scholar 

  72. 72.

    Biedermann B, Eberhardt W, Reichelt W (1994) GABA uptake into isolated retinal Müller glial cells of the guinea-pig detected electrophysiologically. Neuroreport 5:438–440

    PubMed  Google Scholar 

  73. 73.

    Marshall J, Voaden M (1974) An autoradiographic study of the cells accumulating 3H gamma-aminobutyric acid in the isolated retinas of pigeons and chickens. Invest Ophthalmol. 13: 602–607

    PubMed  CAS  Google Scholar 

  74. 74.

    Calaza KC, de Mello FG, Gardino PF (2001) GABA release induced by aspartate-mediated activation of NMDA receptors is modulated by dopamine in a selective subpopulation of amacrine cells. J. Neurocytol. 301:81–93

    Google Scholar 

  75. 75.

    Tapia R, Arias C (1982) Selective stimulation of neurotransmitter release from chick retina by kainic and glutamic acids. J Neurochem 39:1169–1178

    PubMed  CAS  Google Scholar 

  76. 76.

    Levi G, Raiteri M (1993) Carrier-mediated release of neurotransmitters. Trends Neurosci. 16:415–419

    PubMed  CAS  Google Scholar 

  77. 77.

    Do Nascimento JLM, de Mello FG (1985) Induced release of gamma-aminobutyric acid by a carrier-mediated, high-affinity uptake of l-glutamate in cultured chick retina cells. J Neurochem 45:1820–1827

    PubMed  CAS  Google Scholar 

  78. 78.

    Kim D, MJ Kim JH Lee et al (2003) Concomitant distribution shift of glial GABA transporter and S100 calcium-binding proteins in the rat retina after kainate-induced excitotoxic injury. Neurosci Lett 353:17–20

    PubMed  CAS  Google Scholar 

  79. 79.

    Wang D, Quick MW (2005) Trafficking of the plasma membrane gamma-aminobutyric acid transporter GAT1. Size and rates of an acutely recycling pool. J Biol Chem 280:18703–18709

    PubMed  CAS  Google Scholar 

  80. 80.

    Quick MW, Hu J, Wang D et al (2004) Regulation of a gamma-aminobutyric acid transporter by reciprocal tyrosine and serine phosphorylation. J Biol Chem 279:15961–15967

    PubMed  CAS  Google Scholar 

  81. 81.

    Biedermann B, Bringmann A, Franze K et al (2004) GABA(A) receptors in Müller glial cells of the human retina. Glia 46:302–310

    PubMed  Google Scholar 

  82. 82.

    Zhang J, Yang XL (1999) GABA(B) receptors in Müller cells of the bullfrog retina. Neuroreport 10:1833–1836

    PubMed  CAS  Article  Google Scholar 

  83. 83.

    Newman EA (2005) Calcium increases in retinal glial cells evoked by light –induced neuronal activity. J Neurosci 25:5502–5510

    PubMed  CAS  Google Scholar 

  84. 84.

    Perez MTR, Ehinger BE, Lindström K et al (1986) Release of endogenous and radioactive purines from the rabbit retina. Brain Res 398:106–112

    PubMed  CAS  Google Scholar 

  85. 85.

    Santos PF, Caramelo OL, Carvalho AP et al (1999) Characterization of ATP release from cultures enriched in cholinergic amacrine-like neurons. J Neurobiol 41:340–348

    PubMed  CAS  Google Scholar 

  86. 86.

    Pearson RA, Dale N, Llaudet E et al (2005) ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron 46:731–744

    PubMed  CAS  Google Scholar 

  87. 87.

    Reigada D, Lu W, Mitchell CH (2006) Glutamate acts at NMDA receptors on fresh bovine and on cultured human retinal pigment epithelial cells to trigger release of ATP. J Physiol 575:707–720

    PubMed  CAS  Google Scholar 

  88. 88.

    Newman EA (2001) Propagation of intercellular calcium waves in retinal astrocytes and Müller cells. J Neurosci 21:2215–2223

    PubMed  CAS  Google Scholar 

  89. 89.

    Fries JE, Goczalik IM, Wheeler-Schilling TH et al (2005) Identification of P2Y receptor subtypes in human Müller glial cells by physiology, single cell RT-PCR, and immunohistochemistry. Invest Ophthalmol Vis Sci 46:3000–3007

    PubMed  Google Scholar 

  90. 90.

    Jabs R, Guenther E, Marquordt K et al (2000) Evidence for P2X3, P2X4, P2X5 but not for P2X7 containing purinergic receptors in Müller cells of the rat retina. Mol Brain Res 76:205–210

    PubMed  CAS  Google Scholar 

  91. 91.

    Pannicke T, Fischer W, Biedermann B et al (2000) P2X7 receptors in Müller glial cells from the human retina. J Neurosci 20:5965–5972

    PubMed  CAS  Google Scholar 

  92. 92.

    Nunes PHC, Calaza KC, Albuquerque LM et al (2007) Signal transduction pathways associated with ATP-induced proliferation of cell progenitors in the intact embryonic retina. Int J Devl Neurosci 25:499–508

    Google Scholar 

  93. 93.

    Sakaki Y, Fukuda Y, Yamashita M (1996) Muscarinic and purinergic Ca2+ mobilizations in the neural retina of early embryonic chick. Int J Dev Neurosci 14:691–699

    PubMed  CAS  Google Scholar 

  94. 94.

    Sanches G, Alencar LS, Ventura ALM (2002) ATP induces proliferation of retinal cells in culture via activation of PKC and extracellular signal-regulated kinase cascade. Int J Dev Neurosci 20:21–27

    PubMed  CAS  Google Scholar 

  95. 95.

    Sugioka M, Fukuda Y, Yamashita M (1996) Ca2+ responses to ATP via purinoceptors in the early embryonic chick retina. J Physiol 493:855–863

    PubMed  CAS  Google Scholar 

  96. 96.

    Newman EA (2003) Glial cell inhibition of neurons by release of ATP. J Neurosci 23:1659–1666

    PubMed  CAS  Google Scholar 

  97. 97.

    Newman EA, Zahs KR (1997) Calcium waves in retinal glial cells. Science 275:844–847

    PubMed  CAS  Google Scholar 

  98. 98.

    Newman EA (2004) Glial modulation of synaptic transmission in the retina. Glia 47:268–274

    PubMed  Google Scholar 

  99. 99.

    Uckermann O, Wolf A, Kutzera F et al (2006) Glutamate release by neurons evokes a purinergic inhibitory mechanism of osmotic glial cell swelling in the rat retina: Activation by neuropeptide Y. J Neurosci Res 83:538–550

    PubMed  CAS  Google Scholar 

  100. 100.

    Milenkovic I, Weick M, Wiedemann P et al (2003) P2Y receptor-mediated stimulation of Müller Glial cell DNA synthesis: dependence on EGF and PDGF receptor transactivation. Inv. Ophthalmol Vis Sci 44:1211–1220

    Google Scholar 

  101. 101.

    Moll V, Weick M, Milenkovick I et al (2002) P2Y receptor-mediated stimulation of Müller glial DNA synthesis. Invest Ophthalmol Vis Sci 43:766–773

    PubMed  Google Scholar 

  102. 102.

    Pearson RA, Catsicas M, Becker D et al (2002) Purinergic and muscarinic modulation of the cell cycle and calcium signaling in the chick retinal ventricular zone. J Neurosci 22:7569–7579

    PubMed  CAS  Google Scholar 

  103. 103.

    Sugioka M, Zhou WL, Hofmann HD et al (1999) Involvement of P2 purinoceptors in the regulation of DNA synthesis in the neural retina of chick embryo. Int J Dev Neurosci. 17:135–144

    PubMed  CAS  Google Scholar 

  104. 104.

    França GR, Freitas RCC, Ventura ALM (2007) ATP-induced proliferation of developing retinal cells: regulation by factors released from postmitotic cells in culture. Int J Devl Neurosci 25:283–291

    Google Scholar 

  105. 105.

    Dyer MA, Cepko CL (2000) Control of Müller glial cell proliferation and activation following retinal injury. Nat Neurosci 3:873–880

    PubMed  CAS  Google Scholar 

  106. 106.

    Kubrusly RC, Guimaraes MZ, Vieira AP et al (2003) l-DOPA supply to the neuro retina activates dopaminergic communication at the early stages of embryonic development. J Neurochem 86:45–54

    PubMed  CAS  Google Scholar 

  107. 107.

    Biedermann B, Frohlich E, Grosche J et al (1995) Mammalian Müller (glial) cells express functional D2 dopamine receptors. Neuroreport 6:609–612

    PubMed  CAS  Google Scholar 

  108. 108.

    Reis RAM, Ventura ALV, Kubrusly RC et al (2007) Dopaminergic signaling in the developing retina. Brain Res Rev 54:181–188

    PubMed  CAS  Google Scholar 

  109. 109.

    Witkovsky P (2004) Dopamine and retinal function. Documenta Ophthalmologica 108:17–40

    PubMed  Google Scholar 

  110. 110.

    Dunn TA, Wang CT, Colicos MA et al (2006) Imaging of cAMP levels and protein kinase A activity reveals that retinal waves drive oscillations in second-messenger cascades. J Neurosci 26:12807–12815

    PubMed  CAS  Google Scholar 

Download references


This work was supported by grants from FAPERJ, CNPq, PRONEX

Author information



Corresponding author

Correspondence to Fernando Garcia de Mello.

Additional information

Special issue article in honor of Dr. Ricardo Tapia.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Melo Reis, R.A., Ventura, A.L.M., Schitine, C.S. et al. Müller Glia as an Active Compartment Modulating Nervous Activity in the Vertebrate Retina: Neurotransmitters and Trophic Factors. Neurochem Res 33, 1466–1474 (2008). https://doi.org/10.1007/s11064-008-9604-1

Download citation


  • Retina
  • Müller glia
  • Dopamine
  • GABA
  • Glutamate
  • ATP
  • Trophic factors