Skip to main content

Interaction Between RGC Bodies and Glia

  • Chapter
  • First Online:
Neuroprotection and Neuroregeneration for Retinal Diseases
  • 773 Accesses

Abstract

The interactions between glial cells and retinal ganglion cells (RGC) in glaucoma are complicated and are variable depending on the cell types and the status of cell activity. Structural stability is only one function of glial cells. Other important roles of glial cells include intertalking with neurons, other glial cells, and extracellular matrix through direct or indirect communication methods. The transition from quiescent status to reactive status drastically changes the activity and characteristics of glial cells in glaucoma. Glial cells exert both neuroprotective and neurotoxic effects on RGC and effect not only cell survival but also cell morphology, synapse connectivity, and cell functions. Investigations into glial cell modulation and their roles in glaucoma could provide new strategies for glaucoma therapy that could complement intraocular pressure reduction therapy. These new strategies could rescue RGC from death, promote optic nerve regeneration, preserve dendritic morphology and synaptic connectivity, and inhibit the pathological reformation of extracellular matrix in the optic nerve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hernandez MR (2000) The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res 19:297–321

    Article  CAS  PubMed  Google Scholar 

  2. Butt AM, Pugh M, Hubbard P, James G (2004) Functions of optic nerve glia: axoglial signalling in physiology and pathology. Eye (Lond) 18:1110–1121

    Article  CAS  Google Scholar 

  3. Anderson DA (1969) Ultrastructure of human and monkey lamina cribrosa and optic nerve head. Arch Ophthalmol 82:800–814

    Article  CAS  PubMed  Google Scholar 

  4. Neufeld AH (1999) Microglia in the optic nerve head and the region of parapapillary chorioretinal atrophy in glaucoma. Arch Ophthalmol 117:1050–1056

    Article  CAS  PubMed  Google Scholar 

  5. Reichenbach A, Bringmann A (2013) New functions of Muller cells. Glia 61:651–678

    Article  PubMed  Google Scholar 

  6. Crawford Downs J, Roberts MD, Sigal IA (2011) Glaucomatous cupping of the lamina cribrosa: a review of the evidence for active progressive remodeling as a mechanism. Exp Eye Res 93:133–140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Burgoyne CF (2011) A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Exp Eye Res 93:120–132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hernandez MR, Miao H, Lukas T (2008) Astrocytes in glaucomatous optic neuropathy. Prog Brain Res 173:353–373

    Article  CAS  PubMed  Google Scholar 

  9. Siddiqui S, Horvat-Brocker A, Faissner A (2008) The glia-derived extracellular matrix glycoprotein tenascin-C promotes embryonic and postnatal retina axon outgrowth via the alternatively spliced fibronectin type III domain TNfnD. Neuron Glia Biol 4:271–283

    Article  PubMed  Google Scholar 

  10. Varela HJ, Hernandez MR (1997) Astrocyte responses in human optic nerve head with primary open-angle glaucoma. J Glaucoma 6:303–313

    Article  CAS  PubMed  Google Scholar 

  11. Johnson EC, Jia L, Cepurna WO, Doser TA, Morrison JC (2007) Global changes in optic nerve head gene expression after exposure to elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci 48:3161–3177

    Article  PubMed Central  PubMed  Google Scholar 

  12. Lye-Barthel M, Sun D, Jakobs TC (2013) Morphology of astrocytes in a glaucomatous optic nerve. Invest Ophthalmol Vis Sci 54:909–917

    Article  PubMed Central  PubMed  Google Scholar 

  13. Fukuchi T, Sawaguchi S, Hara H, Shirakashi M, Iwata K (1992) Extracellular matrix changes of the optic nerve lamina cribrosa in monkey eyes with experimentally chronic glaucoma. Graefes Arch Clin Exp Ophthalmol 230:421–427

    Article  CAS  PubMed  Google Scholar 

  14. Fukuchi T, Sawaguchi S, Yue BY, Iwata K, Hara H, Kaiya T (1994) Sulfated proteoglycans in the lamina cribrosa of normal monkey eyes and monkey eyes with laser-induced glaucoma. Exp Eye Res 58:231–243

    Article  CAS  PubMed  Google Scholar 

  15. Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di Polo A (2012) The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res 31:152–181

    Article  CAS  PubMed  Google Scholar 

  16. Cho KJ, Kim JH, Park HY, Park CK (2011) Glial cell response and iNOS expression in the optic nerve head and retina of the rat following acute high IOP ischemia-reperfusion. Brain Res 1403:67–77

    Article  CAS  PubMed  Google Scholar 

  17. Yuan L, Neufeld AH (2001) Activated microglia in the human glaucomatous optic nerve head. J Neurosci Res 64:523–532

    Article  CAS  PubMed  Google Scholar 

  18. Chidlow G, Wood JP, Ebneter A, Casson RJ (2012) Interleukin-6 is an efficacious marker of axonal transport disruption during experimental glaucoma and stimulates neuritogenesis in cultured retinal ganglion cells. Neurobiol Dis 48:568–581

    Article  CAS  PubMed  Google Scholar 

  19. Johnson EC, Doser TA, Cepurna WO, Dyck JA, Jia L, Guo Y et al (2011) Cell proliferation and interleukin-6-type cytokine signaling are implicated by gene expression responses in early optic nerve head injury in rat glaucoma. Invest Ophthalmol Vis Sci 52:504–518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Prasanna G, Krishnamoorthy R, Yorio T (2011) Endothelin, astrocytes and glaucoma. Exp Eye Res 93:170–177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Yuan L, Neufeld AH (2000) Tumor necrosis factor-alpha: a potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. Glia 32:42–50

    Article  CAS  PubMed  Google Scholar 

  22. Nakazawa T, Nakazawa C, Matsubara A, Noda K, Hisatomi T, She H et al (2006) Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J Neurosci 26:12633–12641

    Article  CAS  PubMed  Google Scholar 

  23. Goldberg JL, Vargas ME, Wang JT, Mandemakers W, Oster SF, Sretavan DW et al (2004) An oligodendrocyte lineage-specific semaphorin, Sema5A, inhibits axon growth by retinal ganglion cells. J Neurosci 24:4989–4999

    Article  CAS  PubMed  Google Scholar 

  24. Son JL, Soto I, Oglesby E, Lopez-Roca T, Pease ME, Quigley HA et al (2010) Glaucomatous optic nerve injury involves early astrocyte reactivity and late oligodendrocyte loss. Glia 58:780–789

    PubMed  Google Scholar 

  25. Pavlidis M, Stupp T, Naskar R, Cengiz C, Thanos S (2003) Retinal ganglion cells resistant to advanced glaucoma: a postmortem study of human retinas with the carbocyanine dye DiI. Invest Ophthalmol Vis Sci 44:5196–5205

    Article  PubMed  Google Scholar 

  26. Woldemussie E, Wijono M, Ruiz G (2004) Muller cell response to laser-induced increase in intraocular pressure in rats. Glia 47:109–119

    Article  PubMed  Google Scholar 

  27. Resta V, Novelli E, Vozzi G, Scarpa C, Caleo M, Ahluwalia A et al (2007) Acute retinal ganglion cell injury caused by intraocular pressure spikes is mediated by endogenous extracellular ATP. Eur J Neurosci 25:2741–2754

    Article  PubMed  Google Scholar 

  28. Weber AJ, Kaufman PL, Hubbard WC (1998) Morphology of single ganglion cells in the glaucomatous primate retina. Invest Ophthalmol Vis Sci 39:2304–2320

    CAS  PubMed  Google Scholar 

  29. Weber AJ, Harman CD (2005) Structure-function relations of parasol cells in the normal and glaucomatous primate retina. Invest Ophthalmol Vis Sci 46:3197–3207

    Article  PubMed Central  PubMed  Google Scholar 

  30. Shou T, Liu J, Wang W, Zhou Y, Zhao K (2003) Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma. Invest Ophthalmol Vis Sci 44:3005–3010

    Article  PubMed  Google Scholar 

  31. Fu QL, Li X, Shi J, Xu G, Wen W, Lee DH et al (2009) Synaptic degeneration of retinal ganglion cells in a rat ocular hypertension glaucoma model. Cell Mol Neurobiol 29:575–581

    Article  PubMed  Google Scholar 

  32. Chen CT, Alyahya K, Gionfriddo JR, Dubielzig RR, Madl JE (2008) Loss of glutamine synthetase immunoreactivity from the retina in canine primary glaucoma. Vet Ophthalmol 11:150–157

    Article  CAS  PubMed  Google Scholar 

  33. Moreno MC, Sande P, Marcos HA, de Zavalia N, Keller Sarmiento MI, Rosenstein RE (2005) Effect of glaucoma on the retinal glutamate/glutamine cycle activity. FASEB J 19:1161–1162

    CAS  PubMed  Google Scholar 

  34. Lebrun-Julien F, Duplan L, Pernet V, Osswald I, Sapieha P, Bourgeois P et al (2009) Excitotoxic death of retinal neurons in vivo occurs via a non-cell-autonomous mechanism. J Neurosci 29:5536–5545

    Article  CAS  PubMed  Google Scholar 

  35. Shi Z, Rudzinski M, Meerovitch K, Lebrun-Julien F, Birman E, Di Polo A et al (2008) Alpha2-macroglobulin is a mediator of retinal ganglion cell death in glaucoma. J Biol Chem 283:29156–29165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Becquet F, Courtois Y, Goureau O (1997) Nitric oxide in the eye: multifaceted roles and diverse outcomes. Surv Ophthalmol 42:71–82

    Article  CAS  PubMed  Google Scholar 

  37. Tezel G, Wax MB (2000) Increased production of tumor necrosis factor-alpha by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J Neurosci 20:8693–8700

    CAS  PubMed  Google Scholar 

  38. Pernet V, Bourgeois P, Di Polo A (2007) A role for polyamines in retinal ganglion cell excitotoxic death. J Neurochem 103:1481–1490

    Article  CAS  PubMed  Google Scholar 

  39. Schuettauf F, Rejdak R, Walski M, Frontczak-Baniewicz M, Voelker M, Blatsios G et al (2004) Retinal neurodegeneration in the DBA/2J mouse-a model for ocular hypertension. Acta Neuropathol 107:352–358

    Article  PubMed  Google Scholar 

  40. Inman DM, Horner PJ (2007) Reactive nonproliferative gliosis predominates in a chronic mouse model of glaucoma. Glia 55:942–953

    Article  CAS  PubMed  Google Scholar 

  41. Howell GR, Macalinao DG, Sousa GL, Walden M, Soto I, Kneeland SC et al (2011) Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J Clin Invest 121:1429–1444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Lam TT, Kwong JM, Tso MO (2003) Early glial responses after acute elevated intraocular pressure in rats. Invest Ophthalmol Vis Sci 44:638–645

    Article  PubMed  Google Scholar 

  43. Sappington RM, Calkins DJ (2006) Pressure-induced regulation of IL-6 in retinal glial cells: involvement of the ubiquitin/proteasome pathway and NFkappaB. Invest Ophthalmol Vis Sci 47:3860–3869

    Article  PubMed  Google Scholar 

  44. Ebneter A, Casson RJ, Wood JP, Chidlow G (2010) Microglial activation in the visual pathway in experimental glaucoma: spatiotemporal characterization and correlation with axonal injury. Invest Ophthalmol Vis Sci 51:6448–6460

    Article  PubMed  Google Scholar 

  45. Naskar R, Wissing M, Thanos S (2002) Detection of early neuron degeneration and accompanying microglial responses in the retina of a rat model of glaucoma. Invest Ophthalmol Vis Sci 43:2962–2968

    PubMed  Google Scholar 

  46. Wang X, Sam-Wah Tay S, Ng YK (2000) Nitric oxide, microglial activities and neuronal cell death in the lateral geniculate nucleus of glaucomatous rats. Brain Res 878:136–147

    Article  CAS  PubMed  Google Scholar 

  47. Bosco A, Crish SD, Steele MR, Romero CO, Inman DM, Horner PJ et al (2012) Early reduction of microglia activation by irradiation in a model of chronic glaucoma. PLoS One 7:e43602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Bosco A, Steele MR, Vetter ML (2011) Early microglia activation in a mouse model of chronic glaucoma. J Comp Neurol 519:599–620

    Article  PubMed  Google Scholar 

  49. Leibinger M, Muller A, Andreadaki A, Hauk TG, Kirsch M, Fischer D (2009) Neuroprotective and axon growth-promoting effects following inflammatory stimulation on mature retinal ganglion cells in mice depend on ciliary neurotrophic factor and leukemia inhibitory factor. J Neurosci 29:14334–14341

    Article  PubMed  Google Scholar 

  50. Lorber B, Berry M, Douglas MR, Nakazawa T, Logan A (2009) Activated retinal glia promote neurite outgrowth of retinal ganglion cells via apolipoprotein E. J Neurosci Res 87:2645–2652

    Article  CAS  PubMed  Google Scholar 

  51. Surgucheva I, Chidambaram K, Willoughby DA, Surguchov A (2010) Matrix metalloproteinase 9 expression: new regulatory elements. J Ocul Biol Dis Infor 3:41–52

    Article  PubMed Central  PubMed  Google Scholar 

  52. Chiu K, Yeung SC, So KF, Chang RC (2010) Modulation of morphological changes of microglia and neuroprotection by monocyte chemoattractant protein-1 in experimental glaucoma. Cell Mol Immunol 7:61–68

    Article  CAS  PubMed  Google Scholar 

  53. Zhang S, Wang H, Lu Q, Qing G, Wang N, Wang Y et al (2009) Detection of early neuron degeneration and accompanying glial responses in the visual pathway in a rat model of acute intraocular hypertension. Brain Res 1303:131–143

    Article  CAS  PubMed  Google Scholar 

  54. Toops KA, Hagemann TL, Messing A, Nickells RW (2012) The effect of glial fibrillary acidic protein expression on neurite outgrowth from retinal explants in a permissive environment. BMC Res Notes 5:693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Baptiste DC, Hartwick AT, Jollimore CA, Baldridge WH, Seigel GM, Kelly ME (2004) An investigation of the neuroprotective effects of tetracycline derivatives in experimental models of retinal cell death. Mol Pharmacol 66:1113–1122

    Article  CAS  PubMed  Google Scholar 

  56. Bosco A, Inman DM, Steele MR, Wu G, Soto I, Marsh-Armstrong N et al (2008) Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci 49:1437–1446

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kashiwagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Kashiwagi, K. (2014). Interaction Between RGC Bodies and Glia. In: Nakazawa, T., Kitaoka, Y., Harada, T. (eds) Neuroprotection and Neuroregeneration for Retinal Diseases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54965-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54965-9_11

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54964-2

  • Online ISBN: 978-4-431-54965-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics