Skip to main content
Log in

Müller Cells: Genii Loci

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Müller cells are the major type of glial cells in the retina and are actively involved in ensuring its vital functions. They are responsible for maintaining homeostasis and the synaptic activity of neurons by transporting substances to all types of cells within the retina and leading them beyond it. Müller cells guide light to photoreceptors, dividing it according to the wavelength and amplifying the incoming light signal, they protect neurons from damage and are able to regenerate into photoreceptors and other retinal cells under pathological conditions. This review summarizes the knowledge about the morphology and functions of Müller cells which has been accumulated over the years of their study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Roesch, K., Jadhav, A.P., Trimarchi, J.M., et al., The transcriptome of retinal Müller glial cells, J. Comp. Neurol., 2008, vol. 509, no. 2, p. 225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ghai, K., Zelinka, C., and Fischer, A.J., Notch signaling influences neuroprotective and proliferative properties of mature Müller glia, J. Neurosci., 2010, vol. 30, no. 8, p. 3101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu, B., Hunter, D.J., Smith, A.A., et al., The capacity of neural crest-derived stem cells for ocular repair, Birth Defects Res., 2014, vol. 102, no. 3, p. 299.

    Article  CAS  Google Scholar 

  4. Reichenbach, A. and Bringmann, A., New functions of Müller cells, Glia, 2013, vol. 61, p. 651.

    Article  PubMed  Google Scholar 

  5. Vecino, E., Rodriguez, F.D., Ruzafa, N., et al., Glia-neuron interactions in the mammalian retina, Prog. Retinal Eye Res., 2016, vol. 51, p. 1.

    Article  CAS  Google Scholar 

  6. Franze, K., Grosche, J., Skatchkov, S.N., et al., Müller cells are living optical fibers in the vertebrate retina, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 20, p. 8287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Labin, A.M., Safuri, S.K., Ribak, E.N., and Perlman, I., Müller cells separate between wavelengths to improve day vision with minimal effect upon night vision, Nat. Commun., 2014, vol. 5, p. 4319.

    Article  CAS  PubMed  Google Scholar 

  8. Yamada, E. Some structural features of the fovea centralis in the human retina, Arch. Ophthalmol., 1969, vol. 82, p. 151.

    Article  CAS  PubMed  Google Scholar 

  9. Tschulakow, A.V., Oltrup, T., Bende, T., et al., The anatomy of the foveola reinvestigated, PeerJ, 2018, vol. 6, no. 778, p. e4482.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Schubert, H., Cystoid macular edema: the apparent role of mechanical factors, Prog. Clin. Biol. Res., 1989, vol. 312, p. 277.

    CAS  PubMed  Google Scholar 

  11. Lu, Y., Franze, K., Seifert, G., et al., Viscoelastic properties of individual glial cells and neurons in the CNS, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 47, p. 17759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu, Y.-B., Iandiev, I., Hollborn, M., et al., Reactive glial cells: increased stiffness correlates with increased intermediate filament expression, FASEB J., 2011, vol. 25, no. 2, p. 624.

    Article  CAS  PubMed  Google Scholar 

  13. Lundkvist, A., Reichenbach, A., Betsholtz, C., et al., Under stress, the absence of intermediate filaments from Müller cells in the retina has structural and functional consequences, J. Cell Sci., 2004, vol. 117, no. 16, p. 3481.

    Article  CAS  PubMed  Google Scholar 

  14. Lindqvist, N., Liu, Q., Zajadacz, J., et al., Retinal glial (Müller) cells: sensing and responding to tissue stretch, Invest. Ophthalmol. Vis. Sci., 2010, vol. 51, no. 3, p. 1683.

    Article  PubMed  Google Scholar 

  15. Tian, X., Cheng, Y., Liu, G., et al., Expressions of type I collagen, α2 integrin and β1 integrin in sclera of guinea pig with defocus myopia and inhibitory effects of bFGF on the formation of myopia, Int. J. Ophthalmol., 2013, vol. 6, no. 1, p. 54.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu, P., Tsai, C., Wu, H., et al., Outdoor activity during class recess reduces myopia onset and progression in school children, Ophthalmology, 2013, vol. 120, no. 5, p. 1080.

    Article  PubMed  Google Scholar 

  17. Karouta, C. and Ashby, R.S., Correlation between light levels and the development of deprivation myopia, Invest. Ophthalmol. Vis. Sci., 2014, vol. 56, no. 1, p. 299.

    Article  PubMed  Google Scholar 

  18. Fu, X., Zhang, X., Xia, W., et al., Effects of 530 nm monochromatic light on basic fibroblast growth factor and transforming growth factor-β1 expression in Müller cells, Int. J. Ophthalmol., 2015, vol. 8, no. 5, p. 904.

    PubMed  PubMed Central  Google Scholar 

  19. Uckermann, O., Vargova, L., Ulbricht, E., et al., Glutamate-evoked alteration of glial and neuronal cell morphology in the guinea pig retina, J. Neurosci., 2004, vol. 24, no. 45, p. 10149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dmitriev, A.V., Govardovskii, V.I., Schwahn, H.N., and Steinberg, R.H., Light-induced changes of extracellular ions and volume in the isolated chick retina—pigment epithelium preparation, Vis. Neurosci., 1999, vol. 16, no. 6, p. 1157.

    Article  CAS  PubMed  Google Scholar 

  21. Netti, V., Pizzoni, A., Pérez-Domínguez, M., et al., Release of taurine and glutamate contributes to cell volume regulation in human retinal Müller cells: differences in modulation by calcium, J. Neurophysiol., 2018, vol. 120, no. 3, p. 973.

    Article  CAS  PubMed  Google Scholar 

  22. Reichenbach, A. and Bringmann, A., Müller cells in the healthy and diseased retina, Prog. Retinal Eye Res., 2010, vol. 25, no. 4, p. 397.

    Google Scholar 

  23. Pannicke, T., Iandiev, I., Uckermann, O., et al., A potassium channel-linked mechanism of glial cell swelling in the postischemic retina, Mol. Cell. Neurosci., 2004, vol. 26, no. 4, p. 493.

    Article  CAS  PubMed  Google Scholar 

  24. Pannicke, T., Uckermann, O., Iandiev, I., et al., Ocular inflammation alters swelling and membrane characteristics of rat Müller glial cells, J. Neuroimmunol., 2005, vol. 161, nos. 1–2, p. 145.

    Article  CAS  PubMed  Google Scholar 

  25. Pannicke, T., Iandiev, I., Wurm, A., et al., Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina, Diabetes, 2006, vol. 55, no. 3, p. 633.

    Article  CAS  PubMed  Google Scholar 

  26. Reichenbach, A., Wurm, A., Pannicke, T., et al., Müller cells as players in retinal degeneration and edema, Graefe’s Arch. Clin. Exp. Ophthalmol., 2007, vol. 245, no. 5, p. 627.

    Article  Google Scholar 

  27. Pannicke, T., Wurm, A., Iandiev, I., et al., Deletion of aquaporin-4 renders retinal glial cells more susceptible to osmotic stress, J. Neurosci. Res., 2010, vol. 88, no. 13, p. 2877.

    CAS  PubMed  Google Scholar 

  28. Uckermann, O., Wolf, A., Kutzera, F., et al., Glutamate release by neurons evokes a purinergic inhibitory mechanism of osmotic glial cell swelling in the rat retina: activation by neuropeptide Y, J. Neurosci. Res., 2006, vol. 83, no. 4, p. 538.

    Article  CAS  PubMed  Google Scholar 

  29. Wurm, A., Lipp, S., Pannicke, T., et al., Involvement of A(1) adenosine receptors in osmotic volume regulation of retinal glial cells in mice, Mol. Vis., 2009, vol. 15, p. 1858.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wurm, A., Lipp, S., Pannicke, T., et al., Endogenous purinergic signaling is required for osmotic volume regulation of retinal glial cells, J. Neurochem., 2010, vol. 112, no. 5, p. 1261.

    Article  CAS  PubMed  Google Scholar 

  31. Yu, J., Chen, C., Wang, J., et al., In vitro effect of adenosine on the mRNA expression of Kir 2.1 and Kir 4.1 channels in rat retinal Müller cells at elevated hydrostatic pressure, Exp. Ther. Med., 2012, vol. 3, no. 4, p. 617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bringmann, A., Grosche, A., Pannicke, T., and Reichenbach, A., GABA and glutamate uptake and metabolism in retinal glial (Müller) cells, Front. Endocrinol., 2013, vol. 4, no. 48, p. 1.

    Article  CAS  Google Scholar 

  33. Toft-Kehler, A.K., Skytt, D., Poulsen, K., et al., Limited energy supply in Müller cells alters glutamate uptake, Neurochem. Res., 2014, vol. 39, no. 5, p. 941.

    Article  CAS  PubMed  Google Scholar 

  34. Barnett, N.L. and Pow, D.V., Antisense knockdown of GLAST, a glial glutamate transporter, compromises retinal function, Invest. Ophthalmol. Vis. Sci., 2000, vol. 41, no. 2, p. 585.

    CAS  PubMed  Google Scholar 

  35. Bringmann, A., Pannicke, T., Grosche, J., et al., Müller cells in the healthy and diseased retina, Prog. Retinal Eye Res., 2006, vol. 5, no. 4, p. 397.

    Article  CAS  Google Scholar 

  36. Chen, H. and Weber, A., Expression of glial fibrillary acidic protein and glutamine synthetase by Müller cells after optic nerve damage and intravitreal application of brain-derived neurotrophic factor, Glia, 2002, vol. 38, no. 2, p. 115.

    Article  PubMed  Google Scholar 

  37. Paasche, G., Gärtner, U., Germer, A., et al., Mitochondria of retinal Müller (glial) cells: the effects of aging and of application of free radical scavengers, Ophthalmic Res., 2000, vol. 32, no. 5, p. 229.

    Article  CAS  PubMed  Google Scholar 

  38. Schütte, M. and Werner, P., Redistribution of glutathione in the ischemic rat retina, Neurosci. Lett., 1998, vol. 246, no. 1, p. 53.

    Article  PubMed  Google Scholar 

  39. Brückner, E., Grosche, A., Pannicke, T., et al., Mechanisms of VEGF- and glutamate-induced inhibition of osmotic swelling of murine retinal glial (Müller) cells: indications for the involvement of vesicular glutamate release and connexin-mediated ATP release, Neurochem. Res., 2012, vol. 37, no. 2, p. 268.

    Article  PubMed  CAS  Google Scholar 

  40. Powner, M.B., Gillies, M.C., Zhu, M., et al., Loss of Müller’s cells and photoreceptors in macular telangiectasia type 2, Ophthalmology, 2013, vol. 120, no. 11, p. 2344.

    Article  PubMed  Google Scholar 

  41. Bringmann, A., Iandiev, I., Pannicke, T., et al., Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects, Prog. Retinal Eye Res., 2009, vol. 28, no. 6, p. 423.

    Article  CAS  Google Scholar 

  42. Shen, W., Fruttiger, M., Zhu, L., et al., Conditional Müller cell ablation causes independent neuronal and vascular pathologies in a novel transgenic model, J. Neurosci., 2012, vol. 32, no. 45, p. 15715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jablonski, M. and Iannaccone, A., Targeted disruption of Müller cell metabolism induces photoreceptor dysmorphogenesis, Glia, 2000, vol. 32, no. 2, p. 192.

    Article  CAS  PubMed  Google Scholar 

  44. Wang, J. and Kefalov, V.J., The cone-specific visual cycle, Prog. Retinal Eye Res., 2011, vol. 30, no. 2, p. 115.

    Article  CAS  Google Scholar 

  45. Wang, J., Estevez, M., Cornwall, M., and Kefalov, V., Intra-retinal visual cycle required for rapid and complete cone dark adaptation, Nat. Neurosci., 2009, vol. 12, no. 3, p. 295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tout, S., Chan-Ling, T., Holländer, H., and Stone, J., The role of Müller cells in the formation of the blood-retinal barrier, Neuroscience, 1993, vol. 55, no. 1, p. 291.

    Article  CAS  PubMed  Google Scholar 

  47. Eichler, W., Yafai, Y., Keller, T., et al., PEDF derived from glial Müller cells: a possible regulator of retinal angiogenesis, Exp. Cell. Res., 2004, vol. 299, no. 1, p. 68.

    Article  CAS  PubMed  Google Scholar 

  48. Eichler, W., Yafai, Y., Wiedemann, P., and Reichenbach, A., Angiogenesis-related factors derived from retinal glial (Müller) cells in hypoxia, Neuroreport, 2004, vol. 15, no. 10, p. 1633.

    Article  CAS  PubMed  Google Scholar 

  49. Fausett, B.V. and Goldman, D., A role for α1 tubulin-expressing Müller glia in regeneration of the injured zebrafish retina, J. Neurosci., 2006, vol. 26, no. 23, p. 6303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lindsey, A.E. and Powers, M.K., Visual behavior of adult goldfish with regenerating retina, Vis. Neurosci., 2007, vol. 24, no. 3, p. 247.

    Article  PubMed  Google Scholar 

  51. Goldman, D., Müller glia cell reprogramming and retina regeneration, Nat. Rev. Neurosci., 2014, vol. 15, no. 7, p. 431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Powell, C., Grant, A.R., Cornblath, E., and Goldman, D., Analysis of DNA methylation reveals a partial reprogramming of the Müller glia genome during retina regeneration, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 49, p. 19814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nagashima, M., Barthel, L.K., Raymond, P.A. A self-renewing division of zebrafish Müller glial cells generates neuronal progenitors that require N-cadherin to regenerate retinal neurons, Development, 2013, vol. 140, no. 22, p. 4510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ramachandran, R., Reifler, A., Parent, J., et al., Conditional gene expression and lineage tracing of tuba1a expressing cells during zebrafish development and retina regeneration, J. Comp. Neurol., 2010, vol. 518, no. 20, p. 4196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fischer, A. and Reh, T., Müller glia are a potential source of neural regeneration in the postnatal chicken retina, Nat. Neurosci., 2001, vol. 4, no. 3, p. 247.

    Article  CAS  PubMed  Google Scholar 

  56. Jadhav, A.P., Roesch, K., and Cepko, C.L., Development and neurogenic potential of Müller glial cells in the vertebrate retina, Prog. Retinal Eye Res., 2011, vol. 28, no. 4, p. 249.

    Article  CAS  Google Scholar 

  57. Jorstad, N., Wilken, M., Grimes, W., et al., Stimulation of functional neuronal regeneration from Müller glia in adult mice, Nature, 2017, vol. 548, no. 7665, p. 103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yao, K., Qiu, S., Tian, L., et al., Wnt regulates proliferation and neurogenic potential of Müller glial cells via a Lin28/let-7 miRNA-dependent pathway in adult mammalian retinas, Cell Rep., 2016, vol. 17, no. 1, p. 165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yao, K., Qiu, S., Wang,Y. V., et al., Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas, Nature, 2018, vol. 560, no. 7719, p. 484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jayaram, H., Jones, M., Eastlake, K., et al., Transplantation of photoreceptors derived from human Müller glia restore rod function in the P23H rat, Stem Cells Transl. Med., 2014, vol. 3, no. 3, p. 323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Singhal, S., Bhatia, B., Jayaram, H., et al., Human Müller glia with stem cell characteristics differentiate into retinal ganglion cell (RGC) precursors in vitro and partially restore RGC function in vivo following transplantation, Stem Cells Transl. Med., 2012, vol. 1, no. 3, p. 188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rueda, E.M., Hall, B.M., Hill, M.C., et al., The hippo pathway blocks mammalian retinal Müller glial cell reprogramming, Cell Rep., 2019, vol. 27, no. 6, p. 1637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Tikhonovich.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonovich, M.V., Gavrilova, S.A. & Ioshin, I.E. Müller Cells: Genii Loci. Hum Physiol 46, 696–702 (2020). https://doi.org/10.1134/S0362119720050126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119720050126

Keywords:

Navigation