Skip to main content
Log in

Adaptive Synchronization-Based Approach for Finite-Time Parameters Identification of Genetic Regulatory Networks

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper presents an approach to identify the unknown parameters of genetic regulatory network (GRN) in finite-time. The adaptive synchronization-based method is used to solve this problem. Specifically, an auxiliary system with adaptive parameters is constructed, which is regarded as slave system of the GRN with unknown parameters. Then, effective update laws of adaptive parameters and variable structure controllers are designed. The criteria of synchronization and parameters identification in finite-time are derived by utilizing finite-time Lyapunov stability theorem. Finally, an illustrative example is given to show the effectiveness of the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Guss KA, Nelson CE, Hudson A, Kraus ME, Carroll SB (2001) Control of a genetic regulatory network by a selector gene. Science 292(5519):1164–1167

    Article  Google Scholar 

  2. De Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9(1):67–103

    Article  MathSciNet  Google Scholar 

  3. Hamey FK, Nestorowa S, Kinston SJ, Kent DG, Wilson NK, Gottgens B (2017) Reconstructing blood stem cell regulatory network models from single-cell molecular profiles. Proc Natl Acad Sci 114(23):5822–5829

    Article  Google Scholar 

  4. Van de Sande B, Flerin C, Davie K, De Waegeneer M, Hulselmans G, Aibar S, Verbeiren T (2020) A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat Protoc 15(7):2247–2276

    Article  Google Scholar 

  5. Tao B, Xiao M, Sun Q, Cao J (2018) Hopf bifurcation analysis of a delayed fractional-order genetic regulatory network model. Neurocomputing 275:677–686

    Article  Google Scholar 

  6. Dong T, Zhang Q (2020) Stability and oscillation analysis of a gene regulatory network with multiple time delays and diffusion rate. IEEE Trans NanoBiosci 19(2):285–298

    Article  Google Scholar 

  7. Guan ZH, Yue D, Hu B, Li T, Liu F (2017) Cluster synchronization of coupled genetic regulatory networks with delays via aperiodically adaptive intermittent control. IEEE Trans NanoBiosci 16(7):585–599

    Article  Google Scholar 

  8. Wan X, Wang Z, Wu M, Liu X (2018) State estimation for discrete time-delayed genetic regulatory networks with stochastic noises under the round-robin protocols. IEEE Trans Nanobiosci 17(2):145–154

    Article  Google Scholar 

  9. Steggles LJ, Banks R, Wipat A (2006) Modelling and analysing genetic networks: from Boolean networks to Petri nets. International conference on computational methods in systems biology. Springer, Berlin, Heidelberg., pp 127–141

    Google Scholar 

  10. Li H, Yang X, Wang S (2020) Robustness for stability and stabilization of Boolean networks with stochastic function perturbations. IEEE Trans Autom Control 66(3):1231–1237

    Article  MathSciNet  Google Scholar 

  11. Sanchez- Castillo M, Blanco D, Tienda-Luna IM, Carrion MC, Huang Y (2018) A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data. Bioinformatics 34(6):964–970

    Article  Google Scholar 

  12. Zou C, Wang X (2020) Robust stability of delayed Markovian switching genetic regulatory networks with reaction Cdiffusion terms. Comput Math Appl 79(4):1150–1164

    Article  MathSciNet  Google Scholar 

  13. Manivannan R, Cao J, Chong KT (2020) Generalized dissipativity state estimation for genetic regulatory networks with interval time-delay signals and leakage delays. Commun Nonlinear Sci Simu 89:105326

    Article  MathSciNet  Google Scholar 

  14. Lu Q, Xiao M, Cheng Z, Song Y, Huang C, Cao J (2020) Stability and bifurcation analysis of a fractional-order single-gene regulatory model with delays under a novel PD control law. Int J Biomath 13(3):2050016

    Article  MathSciNet  Google Scholar 

  15. Chen L, Aihara K (2002) Stability of genetic regulatory networks with time delay. IEEE Trans Circuits Syst I: Fundam Theor Appl 49(5):602–608

    Article  MathSciNet  Google Scholar 

  16. Sakthivel R, Sathishkumar M, Kaviarasan B, Anthoni SM (2016) Robust finite-time passivity for discrete-time genetic regulatory networks with Markovian jumping parameters. Zeitschrift für Naturforschung A 71(4):289–304

    Article  Google Scholar 

  17. Anbuvithya R, Mathiyalagan K, Sakthivel R, Prakash P (2015) Sampled-data state estimation for genetic regulatory networks with time-varying delays. Neurocomputing 151:737–744

    Article  Google Scholar 

  18. Xiao M, Zheng WX, Jiang G (2018) Bifurcation and oscillatory dynamics of delayed cyclic gene networks including small RNAs. IEEE Trans Cybern 49(3):883–896

    Article  Google Scholar 

  19. Lai Q, Zhao XW, Huang JN, Pham VT, Rajagopal K (2018) Monostability, bistability, periodicity and chaos in gene regulatory network. Eur Phys J Spec Top 227(7–9):719–730

    Article  Google Scholar 

  20. Yue D, Guan ZH, Li J, Liu F, Xiao JW, Ling G (2019) Stability and bifurcation of delay-coupled genetic regulatory networks with hub structure. J Franklin Inst 356(5):2847–2869

    Article  MathSciNet  Google Scholar 

  21. Mercatelli D, Scalambra L, Triboli L, Ray F, Giorgi F. M (2020) Gene regulatory network inference resources: a practical overview. Biochim et Biophysica Acta (BBA)-Gene Regul. Mech. 1863(6):194430

  22. Sanguinetti G (2019) Gene regulatory network inference: an introductory survey. Gene Regulatory Networks. Humana Press, New York, NY., pp 1–23

    Chapter  Google Scholar 

  23. Chen S, Lv J (2002) Parameters identification and synchronization of chaotic systems based upon adaptive control. Phys Lett A 299(4):353–358

    Article  MathSciNet  Google Scholar 

  24. Hu M, Xu Z, Zhang R, Hu A (2007) Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyper-chaotic) systems. Phys. Lett. A 361(3):231–237

    Article  MathSciNet  Google Scholar 

  25. Lu J, Cao J (2007) Synchronization-based approach for parameters identification in delayed chaotic neural networks. Phys A: Stat Mech Appl 382(2):672–682

    Article  Google Scholar 

  26. Malisoff M (2020) Tracking and parameter identification for model reference adaptive control. Int J Robust Nonlinear Control 30(4):1582–1606

    Article  MathSciNet  Google Scholar 

  27. Zhang J, Xia P (2017) An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models. J Sound Vib 389:153–167

    Article  Google Scholar 

  28. Xiong G, Zhang J, Shi D, Yuan X (2020) A simplified competitive swarm optimizer for parameter identification of solid oxide fuel cells. Energy Convers Manage 203

  29. Yu J, Yang X, Gao F, Tao D (2016) Deep multimodal distance metric learning using click constraints for image ranking. IEEE Trans Cybern 47(12):4014–4024

    Article  Google Scholar 

  30. Yu J, Tan M, Zhang H, Tao D, Rui Y (2019) Hierarchical deep click feature prediction for fine-grained image recognition. IEEE Trans Patt Anal Mach Intell. https://doi.org/10.1109/TPAMI.2019.2932058

    Article  Google Scholar 

  31. Tang Y, Wang Z, Fang JA (2011) Parameters identification of unknown delayed genetic regulatory networks by a switching particle swarm optimization algorithm. Expert Syst Appl 38(3):2523–2535

    Article  Google Scholar 

  32. Liu C (2020) Wang F (2020) Parameter identification of genetic regulatory network with time-varying delays via adaptive synchronization method. Adv Differ Equ 1:1–15

    Google Scholar 

  33. Bhat SP, Bernstein DS (2000) Finite-time stability of continuous autonomous systems. SIAM J Control Opt 38(3):751–766

    Article  MathSciNet  Google Scholar 

  34. Li X, Ho DW, Cao J (2019) Finite-time stability and settling-time estimation of nonlinear impulsive systems. Automatica 99:361–368

    Article  MathSciNet  Google Scholar 

  35. Li X, Yang X, Song S (2019) Lyapunov conditions for finite-time stability of time-varying time-delay systems. Automatica 103:135–140

    Article  MathSciNet  Google Scholar 

  36. Mei J, Jiang M, Xu W, Wang B (2013) Finite-time synchronization control of complex dynamical networks with time delay. Commun Nonlinear Sci Numer Simul 18(9):2462–2478

    Article  MathSciNet  Google Scholar 

  37. Zhang Z, Chen M, Li A (2020) Further study on finite-time synchronization for delayed inertial neural networks via inequality skills. Neurocomputing 373:15–23

    Article  Google Scholar 

  38. Li HL, Cao J, Jiang H, Alsaedi A (2019) Finite-time synchronization and parameter identification of uncertain fractional-order complex networks. Phys A: Stat Mech Appl 533

  39. Mei J, Jiang M, Wang B, Long B (2013) Finite-time parameter identification and adaptive synchronization between two chaotic neural networks. J Frankl Inst 350(6):1617–1633

    Article  MathSciNet  Google Scholar 

  40. Sun Y, Wu X, Bai L, Wei Z, Sun G (2016) Finite-time synchronization control and parameter identification of uncertain permanent magnet synchronous motor. Neurocomputing 207:511–518

    Article  Google Scholar 

  41. Zhao H, Zheng M, Li S, Wang W (2018) New results on finite-time parameter identification and synchronization of uncertain complex dynamical networks with perturbation. Mod Phys Lett B 32(09):1850112

    Article  MathSciNet  Google Scholar 

  42. Tang Y (1998) Terminal sliding mode control for rigid robots. Automatica 34(1):51–56

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was jointly supported by the Project funded by the China Postdoctoral Science Foundation No. 2020M672027, the Natural Science Foundation of Shandong Province of China under Grant No. ZR2019MA034, the Youth Creative Team Sci-Tech Program of Shandong Universities (Grant no. 2019KJI007), the National Natural Science Foundation of China under Grant 61973183.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, F. & Zheng, Z. Adaptive Synchronization-Based Approach for Finite-Time Parameters Identification of Genetic Regulatory Networks. Neural Process Lett 54, 3141–3156 (2022). https://doi.org/10.1007/s11063-022-10754-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-022-10754-4

Keywords

Navigation