Skip to main content
Log in

Mechanism of the Action of Comenic Acid on Opioid Receptors

  • REVIEWS
  • Published:
Neurophysiology Aims and scope

Abstract

A crucially novel type of modulation of the opioid reception is described and discussed in this review. Such a ligand as comenic acid does not bind with all sites of the receptors; it binds only to two points of the selectivity sites. Due to this, an intracellular response is not initiated (and homeostasis in the target cell is not disturbed). At the same time, the receptor is internalized (it is submerged in the membrane, and this event allows the receptor to be recovered). Thus, comenic acid functions as an allosteric modulator of opioid receptors with a rather specific mode of action. Such modulation is capable of removing cruel manifestations of the abstinence syndrome in morphine-dependent experimental animals (rats).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Fisyunov, “Molecular mechanisms of G-proteinindependent signalization mediated by 7-transmembrane receptors,” Neurophysiology, 44, No. 3, 291-303 (2012).

    Article  Google Scholar 

  2. A. I. Golovko, L. V. Leont’yeva, and S. I. Golovko, “Mechanisms of cell tolerance to opiates and opioids,” Narkologiya, No. 1, 38-48 (2003).

  3. G. Boonner, F. Meng, and H. Akil, “Selectivity of mu-opioid receptor determined by interfacial residues near third extracellular loop,” Eur. J. Pharmacol., 403, No. 1-2, 37-44 (2000).

    Article  Google Scholar 

  4. H. K. Kramer and E. J. Simon, “Mu- and deltaopioid receptor agonists induce mitogen-activated protein kinase (MAPK) in the absence of receptor internalization,” Neuropharmacology., 39, No. 10, 1707-1719 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. S. L. Borgland, “Acute opioid receptor desensitization and tolerance: Is there a link?” Clin. Exp. Pharmacol. Physiol., 28, No. 3, 147-154 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. R. Seifert and K. Wenzel-Seifert, “Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors,” Naunyn-Schmiedeberg’s Arch. Pharmacol., No. 336, 381-416 (2002).

    Article  Google Scholar 

  7. V. N. Kazakov, T. I. Panova, V. N. Tsyvkin, et al., “Effect of comenic acid on activation of G-proteins by agonists of opiate receptors in the plasma membranes from the rat brain,” Neurophysiology, 36, No. 1, 13-19 (2004).

    Article  Google Scholar 

  8. C. M. Thompson, H. Wojno, and E. Greiner, “Activation of G-proteins by morphine and codeine congeners: insights to the relevance of O- and N-demethylated metabolites at μ- and δ-opioid receptors,” J. Pharmacol. Exp. Ther., 308, No. 2, 547-554 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. D. E. Selley, C. C. Cao, Q. Liu, et al., “Effects of sodium on agonist efficacy for G-protein activation in mu-opioid receptor-transfected CHO cells and rat thalamus,” Br. J. Pharmacol., 130, No. 5, 987-996 (2000).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. C. E. Maher, D. E. Selley, and S. R. Childers, “Relationship of mu-opioid receptor binding to activation of G-proteins in specific rat brain regions,” Biochem. Pharmacol., 59, 1395-1401 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. H. Mizoguchi, H. Wu, and M. Narita, “Lack of μ-opioid receptor-mediated G-protein activation in the spinal cord of mice lacking exon 1 or exons 2 and 3 of the MOR-1 gene,” J. Pharmacol. Sci., No. 93, 423-429 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. E. M. Jutkiewicz, N. P. Walker, and J. E. Folk, “Comparison of peptidic and nonpeptidic δ-opioid agonists on guanosine 5’-O-(3-[35S]thio)triphosphate (-[35S]GTPγS) binding in brain slices from Sprague- Dawley rats,” J. Pharmacol. Exp. Ther., 312, No. 3, 1314-1320 (2005).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. T. I. Panova, “Mechanism of interaction of comenic acid with opioid receptors,” Neironauki: Teor. Klin. Aspekty, 4, No. 1, 48-51 (2008).

    Google Scholar 

  14. I. M. Klotz, “Ligand-receptor complexes: origin and development of the concept,” J. Biol. Chem., 279, No. 1, 1-12 (2008).

    Article  Google Scholar 

  15. M. D. Mashkovskii, Officinal Means. Manual for Physicians, Novaya Volna, Moscow, (2002).

    Google Scholar 

  16. J. T. Williams, M. J. Christie, and O. Manzoni, “Cellular and synaptic adaptations mediating opioid dependence,” Physiol. Rev., 81, No. 1, 299-343 (2001).

    CAS  PubMed  Google Scholar 

  17. E. Piddini and J. Vincent, “Modulation of developmental signals by endocytosis: different means and many ends,” Cell Biol., No. 4, 474-481 (2003).

    Google Scholar 

  18. C. P. Bailey and M. Connor, “Opioids: cellular mechanisms of tolerance and physical dependence,” Curr. Opin. Pharmacol., 5, No. 1, 60-68 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. V. Dang and J. Williams, “Chronic morphine treatment reduces recovery from opioid desensitization,” J. Neurosci., 24, No. 35, 7699-7706 (2004).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. H. Ueda, “Locus-specific involvement of anti-opioid systems in morphine tolerance and dependence,” Ann. N. Y. Acad. Sci., No. 1025, 376-382 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. T. Koch, S. Schulz, and M. Pfeiffer, “C-terminal splice variants of the mouse mu-opioid receptor differ in morphine-induced internalization and receptor resensitization,” J. Biol. Chem., 276, No. 33, 31408-31414 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. M. Pfeiffer, T. Koch, and H. Schroder, “Homoand heterodimerization of somatostatin receptor suptypes. Inactivation of sst(3) receptor function by heterodimerization with sst(2A),” J. Biol. Chem., 276, No. 17, 14027-14036 (2001).

    CAS  PubMed  Google Scholar 

  23. J.G. Li, C. Chen, and J. Yin, “ASP147 in the third transmembrane helix of the rat mu opioid receptor forms ion-pairing with morphine and naltrexone,” Life Sci., 65, Nо. 2, 175-185 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. V. N. Kazakov, T. I. Panova, B. V. Krylov, et al., “Effects of comenic acid on the level of depression and orientational/research activity of morphine-dependent rats in the abstinent syndrome,” Arkh. Klin. Exper. Med., 11, No. 3, 291-296 (2002).

    Google Scholar 

  25. V. N. Kazakov, T. I. Panova, and B. V. Krylov, “Substance Q-134. Analgesic effect,” Byul., Znebol., Intens. Ter., No. 4 (21), 7-13 (2002).

  26. V. N. Kazakov, T. I. Panova, and L. Ye. Panova, “Stress in rats with morphine addiction: Antistressory properties of comenic acid,” Neurophysiology, 35, No. 5, 425-430 (2003).

    Article  Google Scholar 

  27. V. N. Kazakov, T. I. Panova, and Yu. Ye. Panov, “Anxiolytic effect of comenic acid in the morphine abstinent syndrome,” Zh.. Psikhiatr. Med. Psikhol., No. 1 (10), 23-29 (2003).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Panova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panova, T.I., Kazakov, V.M. & Shevchenko, T.O. Mechanism of the Action of Comenic Acid on Opioid Receptors. Neurophysiology 44, 322–331 (2012). https://doi.org/10.1007/s11062-012-9303-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-012-9303-z

Keywords

Navigation