Skip to main content

Advertisement

Log in

Molecular Mechanisms of G Protein-Independent Signaling Mediated by 7-Transmembrane Receptors

  • Published:
Neurophysiology Aims and scope

Receptors of the 7-TMR group (G protein-coupled receptors, GPCRs) are uniquely important from the fundamental physiological aspect because they mediate the effects of a majority of the known neuromediators and hormones. According to a widely accepted paradigm, activation of heterotrimetric G proteins is the initial step in the process of transduction of signals from these receptors to effectors. In recent times, increasing proof of the existence of G protein-independent mechanisms providing initiation of biochemical signals by these receptors and modulation of the excitability of the neurons has been accumulated. According to these data, 7-TMRs are able to interact with a few cytoplasmic scaffold proteins and take part in various protein-to-protein interactions. Despite the fact that functional importance of many such interactions remains unknown at present, the respective results indicate that the above processes are capable not only of providing G protein-independent transmission of signals from the 7-TMRs, but also of influencing pharmacological characteristics, cellular localization, and compartmentalization of the mentioned receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Lefkowitz, “Historical review: a brief history and personal retrospective of seven-transmembrane receptors,” Trends Pharmacol. Sci., 25, 413-422 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. D. K. Vassilatis, J. G. Hohmann, H. Zeng, et al., “The G protein-coupled receptor repertoires of human and mouse,” Proc. Natl. Acad. Sci. USA, 100, 4903-4908 (2003).

    Article  PubMed  CAS  Google Scholar 

  3. J. Bockaert and J. P. Pin, “Molecular tinkering of G protein-coupled receptors: an evolutionary success,” EMBO J., 18, 1723-1729 (1999).

    Article  PubMed  CAS  Google Scholar 

  4. D. Filmore, “It’s a GPCR world,” Mod. Drug Discov. (Am. Chem. Soc.), 7, Issue 11, 24-28 (2004).

    CAS  Google Scholar 

  5. J. P. Overington, B. Al-Lazikani, and A. L. Hopkins, “How many drug targets are there?” Natl. Rev. Drug Discov., 5, 993-996 (2006).

    Article  CAS  Google Scholar 

  6. A. Wise, K. Gearing, and S. Rees, “Target validation of G-protein coupled receptors,” Drug Discov. Today, 7, 235-246 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. J. M. Baldwin, “The probable arrangement of the helices in G protein-coupled receptors,” EMBO J., 12, 1693- 1703 (1993).

    PubMed  CAS  Google Scholar 

  8. D. Spengler, C. Waeber, C. Pantaloni, et al., “Differential signal transduction by five splice variants of the PACAP receptor,” Nature, 365, 170-175 (1993).

    Article  PubMed  CAS  Google Scholar 

  9. J. P. Pin and J. Bockaert, “Get receptive to metabotropic glutamate receptors,” Curr. Opin. Neurobiol., 5, 342-349 (1995).

    Article  PubMed  CAS  Google Scholar 

  10. J. Wess, “G-protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G-protein recognition,” FASEB J., 11, 346-354 (1997).

    PubMed  CAS  Google Scholar 

  11. U. Gether, “Uncovering molecular mechanisms involved in activation of G protein-coupled receptors,” Endocrinol. Rev., 21, 90-113 (2000).

    Article  CAS  Google Scholar 

  12. R. Neuhaus, B. F. Reber, and H. Reuter, “Regulation of bradykinin- and ATP-activated Ca2+-permeable channels in rat pheochromocytoma (PC12) cells,” J. Neurosci., 11, 3984-3990 (1991).

    PubMed  CAS  Google Scholar 

  13. K. Koyano, B. M. Velimirovic, J. J. Grigg, et al., “Two signal transduction mechanisms of substance P-induced depolarization in locus coeruleus neurons,” Eur. J. Neurosci., 5, 1189-1197 (1993).

    Article  PubMed  CAS  Google Scholar 

  14. S. A. Thomas and R. I. Hume, “Single potassium channel currents activated by extracellular ATP in developing chick skeletal muscle: a role for second messengers,” J. Neurophysiol., 69, 1556-1566 (1993).

    PubMed  CAS  Google Scholar 

  15. W. A. Twitchell and S. G. Rane, “Nucleotide-independent modulation of Ca2+-dependent K+ channel current by a μ-type opioid receptor," Mol. Pharmacol., 46, 793-798 (1994).

    PubMed  CAS  Google Scholar 

  16. J. Kehoe, “Glutamate activates a K+ conductance increase in Aplysia neurons that appears to be independent of G proteins,” Neuron, 13, 691-702 (1994).

    Article  PubMed  CAS  Google Scholar 

  17. N. C. Guerineau, J. L. Bossu, B. H. Gahwiler, et al., “Activation of a nonselective cationic conductance by metabotropic glutamatergic and muscarinic agonists in CA3 pyramidal neurons of the rat hippocampus,” J. Neurosci., 15, 4395-4407 (1995).

    PubMed  CAS  Google Scholar 

  18. F. Zheng, H. Hasuo, and J. P. Gallagher, “1S,3R-ACPDpreferring inward current in rat dorsolateral septal neurons is mediated by a novel excitatory amino acid receptor,” Neuropharmacology, 34, 905-917 (1995).

    Article  PubMed  CAS  Google Scholar 

  19. F. A. Abdulla and P. A. Smith, “Nociceptin inhibits T-type Ca2+ channel current in rat sensory neurons by a G-protein-independent mechanism,” J. Neurosci., 17, 8721-8728 (1997).

    PubMed  CAS  Google Scholar 

  20. C. Heuss, M. Scanziani, B. H. Gahwiler, et al., “G-protein-independent signaling mediated by metabotropic glutamate receptors,” Nat. Neurosci., 2, 1070-1077 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. Q. Q. Sun and N. Dale, “G-proteins are involved in 5-HT receptor-mediated modulation of N- and P/Q- but not T-type Ca2+ channels,” J. Neurosci., 19, 890-899 (1999).

    PubMed  CAS  Google Scholar 

  22. O. Iegorova, A. Fisyunov and O. Krishtal, “G-proteinindependent modulation of P-type calcium channels by μ-opioids in Purkinje neurons of rat," Neurosci. Lett., 480, 106-111 (2010).

    Article  PubMed  CAS  Google Scholar 

  23. J. Chevesich, A. J. Kreuz, and C. Montell, “Requirement for the PDZ domain protein, INAD, for localization of the TRP store-operated channel to a signaling complex,” Neuron, 18, 95-105 (1997).

    Article  PubMed  CAS  Google Scholar 

  24. X. Z. Xu, A. Choudhury, X. Li, and C. Montell, “Coordination of an array of signaling proteins through homo- and heteromeric interactions between PDZ domains and target proteins,” J. Cell Biol., 142, 545-555 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. L. A. Hu, Y. Tang, W. E. Miller, et al., “β1-adrenergic receptor association with PSD-95. Inhibition of receptor internalization and facilitation of β-1-adrenergic receptor interaction with N-methyl-D-aspartate receptors,” J. Biol. Chem., 275, 38659-38666 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. R. A. Hall, R. T. Premont, C. W. Chow, et al., “The β2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange,” Nature, 392, 626-630 (1998).

    Article  PubMed  CAS  Google Scholar 

  27. C. Becamel, A. Figge, S. Poliak, et al., “Interaction of serotonin 5-hydroxytryptamine type 2C receptors with PDZ10 of the multi-PDZ domain protein MUPP1,” J. Biol. Chem., 276, 12974-12982 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. J. C. Tu, B. Xiao, S. Naisbitt, et al., “Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins,” Neuron, 23, 583-592 (1999).

    Article  PubMed  CAS  Google Scholar 

  29. J. Kitano, K. Kimura, Y. Yamazaki, et al., “Tamalin, a PDZ domain-containing protein, links a protein complex formation of group 1 metabotropic glutamate receptors and the guanine nucleotide exchange factor cytohesins,” J. Neurosci., 22, 1280-1289 (2002).

    PubMed  CAS  Google Scholar 

  30. M. Shih, F. Lin, J. D. Scott, et al., “Dynamic complexes of β2-adrenergic receptors with protein kinases and phosphatases and the role of gravin," J. Biol. Chem., 274, 1588-1595 (1999).

    Article  PubMed  CAS  Google Scholar 

  31. I. D. Fraser, M. Cong, J. Kim, et al., “Assembly of an A kinase-anchoring protein-β(2)-adrenergic receptor complex facilitates receptor phosphorylation and signaling," Current Biol., 10, 409-412 (2000).

    Article  CAS  Google Scholar 

  32. A. Kato, F. Ozawa, Y. Saitoh, et al., “Novel members of the Vesl/Homer family of PDZ proteins that bind metabotropic glutamate receptors,” J. Biol. Chem., 273, 23969-23975 (1998).

    Article  PubMed  CAS  Google Scholar 

  33. B. Xiao, J. C. Tu, R. S. Petralia, et al., “Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins,” Neuron, 21, 707-716 (1998).

    Article  PubMed  CAS  Google Scholar 

  34. M. S. Ali, P. P. Sayeski, L. B. Dirksen, et al., “Dependence on the motif YIPP for the physical association of Jak2 kinase with the intracellular carboxyl tail of the angiotensin II AT1 receptor,” J. Biol. Chem., 272, 23382-23388 (1997).

    Article  PubMed  CAS  Google Scholar 

  35. J. H. White, R. A. McIllhinney, A. Wise, et al., “The GABAB receptor interacts directly with the related transcription factors CREB2 and ATFx,” Proc. Natl. Acad. Sci. USA, 97, 13967-13972 (2000).

    Article  PubMed  CAS  Google Scholar 

  36. R. B. Nehring, H. P. Horikawa, F. O. El, et al., “The metabotropic GABAB receptor directly interacts with the activating transcription factor 4,” J. Biol. Chem., 275, 35185-35191 (2000).

    Article  PubMed  CAS  Google Scholar 

  37. Y. Tang, L. A. Hu, W. E. Miller, et al., “Identification of the endophilins (SH3p4/p8/p13) as novel binding partners for the β1-adrenergic receptor," Proc. Natl. Acad. Sci. USA, 96, 12559-12564 (1999).

    Article  PubMed  CAS  Google Scholar 

  38. W. Cao, L. M. Luttrell, A. V. Medvedev, et al., “Direct binding of activated c-Src to the β3-adrenergic receptor is required for MAP kinase activation," J. Biol. Chem., 275, 38131-38134 (2000).

    Article  PubMed  CAS  Google Scholar 

  39. F. Liu, Q. Wan, Z. B. Pristupa, et al., “Direct protein-protein coupling enables cross-talk between dopamine D5 and γ-aminobutyric acid A receptors," Nature, 403, 274-280 (2000).

    Article  PubMed  CAS  Google Scholar 

  40. E. Hawrot, Y. Xiao, Q. L. Shi, et al., “Demonstration of a tandem pair of complement protein modules in GABAB receptor 1a,” FEBS Lett., 432, 103-108 (1998).

    Article  PubMed  CAS  Google Scholar 

  41. M. Stacey, H. H. Lin, S. Gordon, and A. J. McKnight, “LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors,” Trends Biochem. Sci., 25, 284-289 (2000).

    Article  PubMed  CAS  Google Scholar 

  42. M. Sheng and C. Sala, “PDZ domains and the organization of supramolecular complexes,” Annu. Rev. Neurosci., 24, 1-29 (2001).

    Article  PubMed  CAS  Google Scholar 

  43. K. Scott and C. S. Zuker, “Assembly of the Drosophila phototransduction cascade into a signaling complex shapes elementary responses,” Nature, 395, 805-808 (1998).

    Article  PubMed  CAS  Google Scholar 

  44. P. W. Gean, C. C. Huang, J. H. Lin, and J. J. Tsai, “Sustained enhancement of NMDA receptor-mediated synaptic potential by isoproterenol in rat amygdalar slices,” Brain Res., 594, 331-334 (1992).

    Article  PubMed  CAS  Google Scholar 

  45. C. C. Huang, J. J. Tsai, and P. W. Gean, “Enhancement of NMDA receptor-mediated synaptic potential by isoproterenol is blocked by Rp-adenosine 3’,5’-cyclic monophosphothioate,” Neurosci. Lett., 161, 207-210 (1993).

    Article  PubMed  CAS  Google Scholar 

  46. I. M. Raman, G. Tong, and C. E. Jahr, “β-adrenergic regulation of synaptic NMDA receptors by cAMPdependent protein kinase," Neuron, 16, 415-421 (1996).

    Article  PubMed  CAS  Google Scholar 

  47. R. A. Hall, L. S. Ostedgaard, R. T. Premont, et al., “A C terminal motif found in the β2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins,” Proc. Natl. Acad. Sci. USA, 95, 8496-8501 (1998).

    Article  PubMed  CAS  Google Scholar 

  48. E. J. Weinman, C. Minkoff, and S. Shenolikar, “Signal complex regulation of renal transport proteins: NHERF and regulation of NHE3 by PKA,” Am. J. Physiol. (Renal Physiol.), 279, F393-F399 (2000).

    CAS  Google Scholar 

  49. T. T. Cao, H. W. Deacon, D. Reczek, et al., “A kinaseregulated PDZ-domain interaction controls endocytic sorting of the β2-adrenergic receptor," Nature, 401, 286-290 (1999).

    Article  PubMed  CAS  Google Scholar 

  50. A. J. McLean and G. Milligan, “Ligand regulation of green fluorescent protein-tagged forms of the human β(1)- and β(2) adrenoreceptors; comparisons with the unmodified receptors," Br. J. Pharmacol., 130, 1825-1832 (2000).

    Article  PubMed  CAS  Google Scholar 

  51. L. A. Hu, W. Chen, R. T. Premont, et al., “G proteincoupled receptor kinase 5 regulates β1-adrenergic receptor association with PSD-95," J. Biol. Chem., 277, 1607-1613 (2002).

    Article  PubMed  CAS  Google Scholar 

  52. C. Ullmer, K. Schmuck, A. Figge, and H. Lubbert, “Cloning and characterization of MUPP1, a novel PDZ domain protein,” FEBS Lett., 424, 63-68 (1998).

    Article  PubMed  CAS  Google Scholar 

  53. H. Boudin, A. Doan, J. Xia, et al., “Presynaptic clustering of mGluR7a requires the PICK1 PDZ domain binding site,” Neuron, 28, 485-497 (2000).

    Article  PubMed  CAS  Google Scholar 

  54. K. K. Dev, Y. Nakajima, J. Kitano, et al., “PICK1 interacts with and regulates PKC phosphorylation of mGLUR7,” J. Neurosci., 20, 7252-7257 (2000).

    PubMed  CAS  Google Scholar 

  55. F. O. El, J. Airas, E. Wischmeyer, et al., “Interaction of the C terminal tail region of the metabotropic glutamate receptor 7 with the protein kinase C substrate PICK1,” Eur. J. Neurosci., 12, 4215-4221 (2000).

    Google Scholar 

  56. H. Boudin and A. M. Craig, “Molecular determinants for PICK1 synaptic aggregation and mGluR7a receptor coclustering: role of the PDZ, coiled-coil, and acidic domains,” J. Biol. Chem., 276, 30270-30276 (2001).

    Article  PubMed  CAS  Google Scholar 

  57. S. Lim, S. Naisbitt, J. Yoon, et al., “Characterization of the Shank family of synaptic proteins. Multiple genes, alternative splicing, and differential expression in brain and development,” J. Biol. Chem., 274, 29510-29518 (1999).

    Article  PubMed  CAS  Google Scholar 

  58. M. Sheng and E. Kim, “The Shank family of scaffold proteins,” J. Cell Sci., 113, Part 11, 1851-1856 (2000).

    PubMed  CAS  Google Scholar 

  59. M. Colledge and J. D. Scott, “AKAPs: from structure to function,” Trends Cell Biol., 9, 216-221 (1999).

    Article  PubMed  CAS  Google Scholar 

  60. G. Fan, E. Shumay, H. Wang, and C. C. Malbon, “The scaffold protein gravin (cAMP-dependent protein kinaseanchoring protein 250) binds the β2-adrenergic receptor via the receptor cytoplasmic Arg-329 to Leu-413 domain and provides a mobile scaffold during desensitization," J. Biol. Chem., 276, 24005-24014 (2001).

    Article  PubMed  CAS  Google Scholar 

  61. F. Lin, H. Wang, and C. C. Malbon, “Gravin-mediated formation of signaling complexes in β2-adrenergic receptor desensitization and resensitization," J. Biol. Chem., 275, 19025-19034 (2000).

    Article  PubMed  CAS  Google Scholar 

  62. M. Cong, S. J. Perry, F. T. Lin, et al., “Regulation of membrane targeting of the G protein-coupled receptor kinase 2 by protein kinase A and its anchoring protein AKAP79,” J. Biol. Chem., 276, 15192-15199 (2001).

    Article  PubMed  CAS  Google Scholar 

  63. P. R. Brakeman, A. A. Lanahan, R. O’Brien, et al., “Homer: a protein that selectively binds metabotropic glutamate receptors,” Nature, 386, 284-288 (1997).

    Article  PubMed  CAS  Google Scholar 

  64. J. C. Tu, B. Xiao, J. P. Yuan, et al., “Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors,” Neuron, 21, 717-726 (1998).

    Article  PubMed  CAS  Google Scholar 

  65. F. Ciruela, M. M. Soloviev, and R. A. McIlhinney, “Co-expression of metabotropic glutamate receptor type 1α with Homer-1a/Vesl-1S increases the cell surface expression of the receptor," Biochem. J., 341, Part 3, 795-803 (1999).

    Article  PubMed  CAS  Google Scholar 

  66. K. W. Roche, J. C. Tu, R. S. Petralia, et al., “Homer 1b regulates the trafficking of group I metabotropic glutamate receptors,” J. Biol. Chem., 274, 25953-25957 (1999).

    Article  PubMed  CAS  Google Scholar 

  67. F. Ango, J. P. Pin, J. C. Tu, et al., “Dendritic and axonal targeting of type 5 metabotropic glutamate receptor is regulated by Homer1 proteins and neuronal excitation,” J. Neurosci., 20, 8710-8716 (2000).

    PubMed  CAS  Google Scholar 

  68. F. Ciruela, M. M. Soloviev, W. Y. Chan, and R. A. McIlhinney, “Homer-1c/Vesl-1L modulates the cell surface targeting of metabotropic glutamate receptor type 1α: evidence for an anchoring function," Mol. Cell Neurosci., 15, 36-50 (2000).

    Article  PubMed  CAS  Google Scholar 

  69. P. J. Kammermeier, B. Xiao, J. C. Tu, et al., “Homer proteins regulate coupling of group I metabotropic glutamate receptors to N-type calcium and M-type potassium channels,” J. Neurosci., 20, 7238-7245 (2000).

    PubMed  CAS  Google Scholar 

  70. F. Ango, L. Prezeau, T. Muller, et al., “Agonistindependent activation of metabotropic glutamate receptors by the intracellular protein Homer,” Nature, 411, 962-965 (2001).

    Article  PubMed  CAS  Google Scholar 

  71. V. Coutinho, I. Kavanagh, H. Sugiyama, et al., “Characterization of a metabotropic glutamate receptor type 5-green fluorescent protein chimera (mGluR5-GFP): pharmacology, surface expression, and differential effects of Homer-1a and Homer-1c,” Mol. Cell Neurosci., 18, 296-306 (2001).

    Article  PubMed  CAS  Google Scholar 

  72. R. Minakami, A. Kato, and H. Sugiyama, “Interaction of Vesl-1L/Homer 1c with syntaxin 13,” Biochem. Biophys. Res. Commun., 272, 466-471 (2000).

    Article  PubMed  CAS  Google Scholar 

  73. C. Schindler and J. E. Darnell, Jr., “Transcriptional responses to polypeptide ligands: the JAK-STAT pathway,” Annu. Rev. Biochem., 64, 621-651 (1995).

    Article  PubMed  CAS  Google Scholar 

  74. M. B. Marrero, V. J. Venema, H. Ju, et al., “Regulation of angiotensin II-induced JAK2 tyrosine phosphorylation: roles of SHP-1 and SHP-2,” Am. J. Physiol, 275, C1216-C1223 (1998).

    PubMed  CAS  Google Scholar 

  75. M. S. Ali, P. P. Sayeski, and K. E. Bernstein, “Jak2 acts as both a STAT1 kinase and as a molecular bridge linking STAT1 to the angiotensin II AT1 receptor,” J. Biol. Chem., 275, 15586-15593 (2000).

    Article  PubMed  CAS  Google Scholar 

  76. P. P. Sayeski, M. S. Ali, S. J. Frank, and K. E. Bernstein, “The angiotensin II-dependent nuclear translocation of Stat1 is mediated by the Jak2 protein motif 231YRFRR,” J. Biol. Chem., 276, 10556-10563 (2001).

    Article  PubMed  CAS  Google Scholar 

  77. G. Hjalm, R. J. MacLeod, O. Kifor, et al., “Filamin-A binds to the carboxyl-terminal tail of the calciumsensing receptor, an interaction that participates in CaR-mediated activation of mitogen-activated protein kinase,” J. Biol. Chem., 276, 34880-34887 (2001).

    Article  PubMed  CAS  Google Scholar 

  78. H. Awata, C. Huang, M. E. Handlogten, and R. T. Miller, “Interaction of the calcium-sensing receptor and filamin, a potential scaffolding protein,” J. Biol. Chem., 276, 34871-34879 (2001).

    Article  PubMed  CAS  Google Scholar 

  79. L. M. Luttrell, S. S. Ferguson, Y. Daaka, et al., “β arrestin-dependent formation of β2-adrenergic receptor- Src protein kinase complexes," Science, 283, 655-661 (1999).

    Article  PubMed  CAS  Google Scholar 

  80. S. Maudsley, K. L. Pierce, A. M. Zamah, et al., “The β(2)-adrenergic receptor mediates extracellular signal-regulated kinase activation via assembly of a multi-receptor complex with the epidermal growth factor receptor," J. Biol. Chem., 275, 9572-9580 (2000).

    Article  PubMed  CAS  Google Scholar 

  81. M. Li, J. C. Bermak, Z. W. Wang, and Q. Y. Zhou, “Modulation of dopamine D2 receptor signaling by actin-binding protein (ABP-280),” Mol. Pharmacol., 57, 446-452 (2000).

    PubMed  CAS  Google Scholar 

  82. M. J. Lohse, J. L. Benovic, J. Codina, et al., “β arrestin: a protein that regulates β-adrenergic receptor function," Science, 248, 1547-1550 (1990).

    Article  PubMed  CAS  Google Scholar 

  83. H. Attramadal, J. L. Arriza, C. Aoki, et al., “β arrestin 2, a novel member of the arrestin/β arrestin gene family," J. Biol. Chem., 267, 17882-17890 (1992).

    PubMed  CAS  Google Scholar 

  84. J. G. Krupnick and J. L. Benovic, “The role of receptor kinases and arrestins in G protein-coupled receptor regulation,” Annu. Rev. Pharmacol. Toxicol., 38, 289-319 (1998).

    Article  PubMed  CAS  Google Scholar 

  85. L. M. Luttrell, Y. Daaka, and R. J. Lefkowitz, “Regulation of tyrosine kinase cascades by G-proteincoupled receptors,” Curr. Opin. Cell Biol., 11, 177-183 (1999).

    Article  PubMed  CAS  Google Scholar 

  86. R. J. Lefkowitz, “G protein-coupled receptors. III. New roles for receptor kinases and β arrestins in receptor signaling and desensitization," J. Biol. Chem., 273, 18677-18680 (1998).

    Article  PubMed  CAS  Google Scholar 

  87. O. B. Goodman, Jr., J. G. Krupnick, F. Santini, et al., “β Arrestin acts as a clathrin adaptor in endocytosis of the β2-adrenergic receptor,” Nature, 383, 447-450 (1996).

    Article  PubMed  CAS  Google Scholar 

  88. S. A. Laporte, R. H. Oakley, J. Zhang, et al., “The β2-adrenergic receptor/β arrestin complex recruits the clathrin adaptor AP-2 during endocytosis," Proc. Natl. Acad. Sci. USA, 96, 3712-3717 (1999).

    Article  PubMed  CAS  Google Scholar 

  89. S. A. Laporte, R. H. Oakley, J. A. Holt, et al., “The interaction of β arrestin with the AP-2 adaptor is required for the clustering of β2-adrenergic receptor into clathrin-coated pits," J. Biol. Chem., 275, 23120-23126 (2000).

    Article  PubMed  CAS  Google Scholar 

  90. P. H. McDonald, N. L. Cote, F. T. Lin, et al., “Identification of NSF as a β arrestin1-binding protein. Implications for β2-adrenergic receptor regulation," J. Biol. Chem., 274, 10677-10680 (1999).

    Article  PubMed  CAS  Google Scholar 

  91. A. Claing, W. Chen, W. E. Miller, et al., “β Arrestinmediated ADP-ribosylation factor 6 activation and β2-adrenergic receptor endocytosis,” J. Biol. Chem., 276, 42509-42513 (2001).

    Article  PubMed  CAS  Google Scholar 

  92. P. H. McDonald, C. W. Chow, W. E. Miller, et al., “β Arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3," Science, 290, 1574-1577 (2000).

    Article  PubMed  CAS  Google Scholar 

  93. W. E. Miller, P. H. McDonald, S. F. Cai, et al., “Identification of a motif in the carboxyl terminus of β arrestin 2 responsible for activation of JNK3,” J. Biol. Chem., 276, 27770-27777 (2001).

    Article  PubMed  CAS  Google Scholar 

  94. K. A. DeFea, J. Zalevsky, M. S. Thoma, et al., “β arrestindependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2,” J. Cell Biol., 148, 1267-1281 (2000).

    Article  PubMed  CAS  Google Scholar 

  95. L. M. Luttrell, F. L. Roudabush, E. W. Choy, et al., “Activation and targeting of extracellular signalregulated kinases by β arrestin scaffolds," Proc. Natl. Acad. Sci. USA, 98, 2449-2454 (2001).

    Article  PubMed  CAS  Google Scholar 

  96. W. E. Miller, S. Maudsley, S. Ahn, et al., “β Arrestin 1 interacts with the catalytic domain of the tyrosine kinase c-SRC. Role of β arrestin1-dependent targeting of c-SRC in receptor endocytosis," J. Biol. Chem., 275, 11312-11319 (2000).

    Article  PubMed  CAS  Google Scholar 

  97. S. R. Coughlin, “How the protease thrombin talks to cells,” Proc. Natl. Acad. Sci. USA, 96, 11023-11027 (1999).

    Article  PubMed  CAS  Google Scholar 

  98. K. Kaupmann, K. Huggel, J. Heid, et al., “Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors,” Nature, 386, 239-246 (1997).

    Article  PubMed  CAS  Google Scholar 

  99. D. Benke, M. Honer, C. Michel, et al., “γ-Aminobutyric acid type B receptor splice variant proteins GBR1a and GBR1b are both associated with GBR2 in situ and display differential regional and subcellular distribution,” J. Biol. Chem., 274, 27323-27330 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to А. I. Fisyunov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisyunov, А.I. Molecular Mechanisms of G Protein-Independent Signaling Mediated by 7-Transmembrane Receptors. Neurophysiology 44, 255–264 (2012). https://doi.org/10.1007/s11062-012-9295-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-012-9295-8

Keywords

Navigation