Skip to main content

Opioid Effects and Classification

  • Chapter
  • First Online:
Opioids

Abstract

This chapter describes the main groups of opioid receptor ligands based on their origin, chemical structure, and pharmacological actions. The first section describes natural, semisynthetic, and synthetic compounds, as well as endogenous opioid peptides and their precursors. The effects of morphine, the opioid prototype, are covered in the second section. The third part reviews the structure-activity relationships of main opioids and provides a short description of the structural characteristics of (a) morphine-like drugs (e.g., codeine and heroin), (b) morphinans (e.g., thebaine), (c) benzomorphans (e.g., pentazocine), (d) phenylpiperidines (e.g., fentanyl), and (e) diphenylheptanes (e.g., methadone). The last section explains the differences in opioid effects based upon differential affinities for constitutively active or inactive receptor subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Veening JG, Barendregt HP. The effects of beta-endorphin: state change modification. Fluids Barriers CNS. 2015;12:3. https://doi.org/10.1186/2045-8118-12-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pilozzi A, Carro C, Huang X. Roles of β-endorphin in stress, behavior, neuroinflammation, and brain energy metabolism. Int J Mol Sci. 2020;22:338. https://doi.org/10.3390/ijms22010338.

    Article  CAS  PubMed Central  Google Scholar 

  3. Cahill C, Tejeda HA, Spetea M, Chen C, Liu-Chen L-Y. Fundamentals of the dynorphins/kappa opioid receptor system: from distribution to signaling and function. Handb Exp Pharmacol. 2021;271:1–19. https://doi.org/10.1007/164_2021_433.

    Article  Google Scholar 

  4. Gu Z-H, Wang B, Kou Z-Z, Bai Y, Chen T, Dong Y-L, et al. Endomorphins: promising endogenous opioid peptides for the development of novel analgesics. Neurosignals. 2017;25:98–116. https://doi.org/10.1159/000484909.

    Article  PubMed  Google Scholar 

  5. Fricker LD, Margolis EB, Gomes I, Devi LA. Five decades of research on opioid peptides: current knowledge and unanswered questions. Mol Pharmacol. 2020;98:96–108. https://doi.org/10.1124/mol.120.119388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koo CY. Respiratory effects of opioids in perioperative medicine. Open Anesthesiol J. 2011;5:23–34. https://doi.org/10.2174/1874321801105010023.

    Article  CAS  Google Scholar 

  7. Ehsan Z, Mahmoud M, Shott SR, Amin RS, Ishman SL. The effects of anesthesia and opioids on the upper airway: a systematic review. Laryngoscope. 2016;126:270–84. https://doi.org/10.1002/lary.25399.

    Article  CAS  PubMed  Google Scholar 

  8. Zebraski SE, Kochenash SM, Raffa RB. Lung opioid receptors: pharmacology and possible target for nebulized morphine in dyspnea. Life Sci. 2000;66:2221–31. https://doi.org/10.1016/S0024-3205(00)00434-3.

    Article  CAS  PubMed  Google Scholar 

  9. Saito R, Takano Y, Kamiya H-O. Roles of substance P and NK(1) receptor in the brainstem in the development of emesis. J Pharmacol Sci. 2003;91:87–94. https://doi.org/10.1254/jphs.91.87.

    Article  CAS  PubMed  Google Scholar 

  10. Larson MD, Behrends M. Portable infrared pupillometry: a review. Anesth Analg. 2015;120:1242–53. https://doi.org/10.1213/ANE.0000000000000314.

    Article  PubMed  Google Scholar 

  11. Khansari M, Sohrabi M, Zamani F. The usage of opioids and their adverse effects in gastrointestinal practice: a review. Middle East J Dig Dis. 2013;5:5–16.

    PubMed  PubMed Central  Google Scholar 

  12. Krantz MJ, Palmer RB, Haigney MCP. Cardiovascular complications of opioid use: JACC state-of-the-art review. J Am Coll Cardiol. 2021;77:205–23.

    Article  CAS  PubMed  Google Scholar 

  13. Fountas A, Van Uum S, Karavitaki N. Opioid-induced endocrinopathies. Lancet Diabetes Endocrinol. Elsevier Ltd. 2020;8:68–80. https://doi.org/10.1016/S2213-8587(19)30254-2.

    Article  CAS  Google Scholar 

  14. Antony T, Alzaharani SY, El-Ghaiesh SH. Opioid-induced hypogonadism: pathophysiology, clinical and therapeutics review. Clin Exp Pharmacol Physiol. 2020;47:741–50. https://doi.org/10.1111/1440-1681.13246.

    Article  CAS  PubMed  Google Scholar 

  15. de Vries F, Bruin M, Lobatto DJ, Dekkers OM, Schoones JW, van Furth WR, et al. Opioids and their endocrine effects: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2020;105:1020–9. https://doi.org/10.1210/clinem/dgz022.

    Article  Google Scholar 

  16. Nguyen E, Lim G, Ross SE. Evaluation of therapies for peripheral and neuraxial opioid-induced pruritus based on molecular and cellular discoveries. Anesthesiology. 2021;135:350–65. https://doi.org/10.1097/ALN.0000000000003844.

    Article  CAS  PubMed  Google Scholar 

  17. Liu XY, Liu ZC, Sun YG, Ross M, Kim S, Tsai FF, et al. Unidirectional cross-activation of GRPR by MOR1D uncouples itch and analgesia induced by opioids. Cell. Elsevier Inc. 2011;147:447–58. https://doi.org/10.1016/j.cell.2011.08.043.

    Article  CAS  Google Scholar 

  18. Bigliardi PL, Tobin DJ, Gaveriaux-Ruff C, Bigliardi-Qi M. Opioids and the skin – where do we stand? Exp Dermatol. 2009;18:424–30. https://doi.org/10.1111/j.1600-0625.2009.00844.x.

    Article  CAS  PubMed  Google Scholar 

  19. Prommer E. Levorphanol: revisiting an underutilized analgesic. Palliat Care Res Treat. 2014;8:7–10. https://doi.org/10.4137/PCRT.S13489.

    Article  Google Scholar 

  20. Ebert B, Thorkildsen C, Andersen S, Christrup LL, Hjeds H. Opioid analgesics as noncompetitive N-methyl-d-aspartate (NMDA) antagonists. Biochem Pharmacol. 1998;56:553–9. https://doi.org/10.1016/S0006-2952(98)00088-4.

    Article  CAS  PubMed  Google Scholar 

  21. Hosztafi S. Recent advances in the chemistry of oripavine and its derivatives. Adv Biosci Biotechnol. 2014;05:704–17. https://doi.org/10.4236/abb.2014.58084.

    Article  CAS  Google Scholar 

  22. Kibaly C, Xu C, Cahill CM, Evans CJ, Law P-YY. Non-nociceptive roles of opioids in the CNS: opioids’ effects on neurogenesis, learning, memory and affect. Nat Rev Neurosci. Springer US. 2019;20:5–18. https://doi.org/10.1038/s41583-018-0092-2.

    Article  CAS  Google Scholar 

  23. Trescot AM, Datta S, Lee M, Hansen H. Opioid pharmacology. Pain Physician. 2008;11:S133–53.

    Article  PubMed  Google Scholar 

  24. Cruz SL, Granados-Soto V. Opioids and opiates: pharmacology, abuse, and addiction. In: Pfaff DW, Volkow ND, editors. Neuroscience in the 21st century. New York: Springer New York; 2016. p. 3625–57. https://doi.org/10.1007/978-1-4939-3474-4_156.

    Chapter  Google Scholar 

  25. Subedi M, Bajaj S, Kumar MS, YC M. An overview of tramadol and its usage in pain management and future perspective. Biomed Pharmacother. Elsevier. 2019;111:443–51. https://doi.org/10.1016/j.biopha.2018.12.085.

    Article  CAS  Google Scholar 

  26. Raffa RB, Buschmann H, Christoph T, Eichenbaum G, Englberger W, Flores CM, et al. Mechanistic and functional differentiation of tapentadol and tramadol. Expert Opin Pharmacother. 2012;13:1437–49. https://doi.org/10.1517/14656566.2012.696097.

    Article  CAS  PubMed  Google Scholar 

  27. Deeks ED. Tapentadol prolonged release: a review in pain management. Drugs. Springer International Publishing. 2018;78:1805–16. https://doi.org/10.1007/s40265-018-1007-2.

    Article  Google Scholar 

  28. Jain M, Wylie WP. Diphenoxylate and atropine [Internet]. In: StatPearls. StatPearls Publishing; 2021.

    Google Scholar 

  29. Friedman A, Nabong L. Opioids. Phys Med Rehabil Clin N Am. 2020;31:289–303. https://doi.org/10.1016/j.pmr.2020.01.007.

    Article  PubMed  Google Scholar 

  30. Inturrisi CE. Clinical pharmacology of opioids for pain. Clin J Pain. 2002;18:S3–13. https://doi.org/10.1097/00002508-200207001-00002.

    Article  PubMed  Google Scholar 

  31. Aronson JK. Opioid receptor antagonists. In: Meyler’s side effects of drugs. 16th ed. Oxford: Elsevier; 2016. p. 381. https://doi.org/10.1016/B978-0-444-53717-1.01184-7.

    Chapter  Google Scholar 

  32. Theriot J, Sabir S, Azadfard M. Opioid antagonists [Internet]. In: StatPearls. StatPearls Publishing; 2021.

    Google Scholar 

  33. Pergolizzi JV Jr, Christo PJ, LeQuang JA, Magnusson P. The use of peripheral μ-opioid receptor antagonists (PAMORA) in the management of opioid-induced constipation: an update on their efficacy and safety. Drug Des Devel Ther. 2020;14:1009–25. https://doi.org/10.2147/DDDT.S221278.

    Article  CAS  PubMed  Google Scholar 

  34. Vardanyan RS, Hruby VJ. Analgesics. In: Synthesis of essential drugs. Elsevier; 2006. p. 19–55. https://doi.org/10.1016/B978-044452166-8/50003-0.

    Chapter  Google Scholar 

  35. Swift RM. Naltrexone and nalmefene: any meaningful difference? Biol Psychiatry. Elsevier. 2013;73:700–1. https://doi.org/10.1016/j.biopsych.2013.03.002.

    Article  CAS  Google Scholar 

  36. Gress K, Charipova K, Jung JW, Kaye AD, Paladini A, Varrassi G, et al. A comprehensive review of partial opioid agonists for the treatment of chronic pain. Best Pract Res Clin Anaesthesiol. Elsevier Ltd. 2020;34:449–61. https://doi.org/10.1016/j.bpa.2020.06.003.

    Article  Google Scholar 

  37. Urits I, Pham C, Swanson D, Berardino K, Bandi P, Amgalan A, et al. The utilization of buprenorphine in chronic pain. Best Pract Res Clin Anaesthesiol. Elsevier Ltd. 2020;34:355–68. https://doi.org/10.1016/j.bpa.2020.06.005.

    Article  Google Scholar 

  38. Berg KA, Clarke WP. Making sense of pharmacology: inverse agonism and functional selectivity. Int J Neuropsychopharmacol. 2018;21:962–77. https://doi.org/10.1093/ijnp/pyy071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Burford NT, Traynor JR, Alt A. Positive allosteric modulators of the μ-opioid receptor: a novel approach for future pain medications. Br J Pharmacol. John Wiley & Sons, Ltd. 2015;172:277–86. https://doi.org/10.1111/bph.12599.

    Article  CAS  Google Scholar 

  40. Seifert R, Wenzel-Seifert K. Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn Schmiedeberg's Arch Pharmacol. 2002;366:381–416. https://doi.org/10.1007/s00210-002-0588-0.

    Article  CAS  Google Scholar 

  41. Meye FJ, van Zessen R, Smidt MP, Adan RAH, Ramakers GMJ. Morphine withdrawal enhances constitutive -opioid receptor activity in the ventral tegmental area. J Neurosci. 2012;32:16120–8. https://doi.org/10.1523/JNEUROSCI.1572-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang Z, Bilsky EJ, Porreca F, Sadée W. Accelerated communication: constitutive μ opioid receptor activation as a regulatory mechanism underlying narcotic tolerance and dependence. Life Sci. 1994;54:PL339–50. https://doi.org/10.1016/0024-3205(94)90022-1.

    Article  CAS  PubMed  Google Scholar 

  43. Sirohi S, Dighe SV, Madia PA, Yoburn BC. The relative potency of inverse opioid agonists and a neutral opioid antagonist in precipitated withdrawal and antagonism of analgesia and toxicity. J Pharmacol Exp Ther. 2009;330:513–9. https://doi.org/10.1124/jpet.109.152678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cruz SL, Villarreal JE, Volkow ND. Further evidence that naloxone acts as an inverse opiate agonist: implications for drug dependence and withdrawal. Life Sci. 1996;58:PL381–9. https://doi.org/10.1016/0024-3205(96)00250-0.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia L. Cruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cruz, S.L., Paz-Ramos, M.I., Hernández-Mendoza, A., Carranza-Aguilar, C.J. (2022). Opioid Effects and Classification. In: Cruz, S.L. (eds) Opioids. Springer, Cham. https://doi.org/10.1007/978-3-031-09936-6_8

Download citation

Publish with us

Policies and ethics