Skip to main content
Log in

Role of the Opioid System in the Modulation of Thermonociceptive Sensitivity of Mollusks Affected by Weak Electromagnetic Factors

  • Published:
Neurophysiology Aims and scope

We studied the role of the opioid system in the modulation of thermonociceptive sensitivity of Helix albestens mollusks subjected within a 21-day-long period to the conditions of electromagnetic shielding, action of a weak extremely low-frequency oscillating magnetic field, and combination of the above factors. Results of blocking of opioid receptors by naloxone demonstrated that the efficacy of antonociceptive influences of the opioid system is dissimilar within different stages of action of the above electromagnetic factors. We believe that changes in the activity of this system are involved, to a noticeable extent, in magnetoinduced modulation of thermonociceptive sensitivity in mollusks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Temour’yants, A. S. Kostyuk, and K. N. Tumanyants, “Dynamics and infradian rhythmics of thermal/pain sensitivity of the Helix mollusk under the action of electromagnetic fields,” Neurophysiology, 42, No. 4, pp. 329–339, 2010.

    Google Scholar 

  2. A. H. Frey, “Electromagnetic field interactions with biological systems,” FASEB J., 7, No. 2, 272–281 (1993).

    PubMed  CAS  Google Scholar 

  3. C. Del Seppia, S. Ghione, P. Luschi, et al., “Exposure to oscillating magnetic fields influences sensitivity to electrical stimuli. I. Experiments on pigeons,” Bioelectromagnetics, 16, 290–294 (1995).

    Article  PubMed  Google Scholar 

  4. H. Lai, “Spatial learning deficit in the rat after exposure to a 60 Hz magnetic field,” Bioelectromagnetics, 17, No. 6, 494–496 (1996).

    Article  PubMed  CAS  Google Scholar 

  5. M. Kavaliers and K.-P. Ossenkopp, “Magnetic fields differentially inhibit mu, delta, kappa and sigma opiateinduced analgesia in mice,” Peptide, 1, 449–453 (1986).

    Google Scholar 

  6. Ye. N. Chuyan, N. A. Temour’yants, V. P. Ponomareva, and N. V. Chirskii, Functional Asymmetry in Humans and Animals: Effects of Low-Intensity Millimeter-Range Electromagnetic Radiation [in Russian], Elin’yo, Simferopol’, 2004.

    Google Scholar 

  7. A. A. Radzievsky, O. V. Gordiienko, S. Alekseev, et al., “Electromagnetic millimeter wave induced hypoalgesia: frequency dependence and involvement of endogenous opioids,” Bioelectromagnetics, 29, 284–295 (2008).

    Article  PubMed  CAS  Google Scholar 

  8. Ye. N. Chuyan and E. R. Dzheldubayeva, Mechanisms of the Antinociceptive Action of Low-Intensity Millimeter Radiation [in Russian], DIP, Simferopol’, 2006.

    Google Scholar 

  9. M. V. Teppone and R. S. Avakyan, “Extremely high-frequency (EHF) therapy in oncology,” Millimetr. Volny Biol. Med., 1, 3–19, 2003.

    Google Scholar 

  10. V. M. Kuz’menko, “Role of microwave resonance therapy in complex treatment of patients suffering from cerebral atherosclerosis,” Likuval’na Sprava, 7, 146–148 (1998).

    Google Scholar 

  11. T. I. Usichenko, H. F. Herget, “Treatment of chronic pain with millimetre wave therapy (MWT) in patients with diffuse connective tissue diseases: a pilot case series study,” Eur. J. Pain, 7, 289–294 (2003).

    Article  PubMed  Google Scholar 

  12. V. E. D’yakonova, “Role of opioid peptides in the behavior of invertebrates,” Zh. Évol. Biokhim. Fiziol., 37, No. 4, 253–261 (2001).

    Google Scholar 

  13. V. G. Vishnevskii, A. S. Kostyuk, and N. A. Temur’yants, “Device for the measurements of parameters of the pain sensitivity of terrestrial mollusks,” Fiz. Zhivogo, 17, No. 2, 174–178 (2009).

    Google Scholar 

  14. Patent 48094 Ukraine, MPK51 A 01 K 61/00, Device for the Measurements of Parameters of the Pain Sensitivity of Terrestrial Mollusks [in Ukranian], N. A. Temour’yants, V. G. Vishnevskii, A. S. Kostyuk, and V. B. Makeev, publ. 10.03.10, Bull. No. 5.

  15. W. O. Schumann, “Uber die damfung der elecromagnetischen eigenwingungen des systems erde-luftionosphare,” Naturwissenschaften, 7, 250–254 (1982).

    Google Scholar 

  16. V. G. Sidyakin, Effects of Global Ecological Factors on the Nervous System [in Russian], Naukova Dumka, Kiev (1986).

    Google Scholar 

  17. A. D. Slonim, A Doctrine on Physiological Adaptation [in Russian], Nauka, Leningrad (1979).

    Google Scholar 

  18. G. Polk and F. Fitchen, “Schumann resonances of the Earth-ionosphere cavity – extremely low frequency reception at Kingston,” Radio Propag., 3, No. 66, 313 (1962).

    Google Scholar 

  19. F. S. Prato, M. Kavaliers, and A. W. Thomas, “Extremely low frequency magnetic fields can either increase or decrease analgesia in the land snail depending on field and light conditions,” Bioelectromagnetics, 21, 287–301 (2000).

    Article  PubMed  CAS  Google Scholar 

  20. W. R. Martin, “Naloxone,” Ann. Intern. Med., 85, No. 6, 765–768 (1976).

    PubMed  CAS  Google Scholar 

  21. S. N. Lapach, A. V. Chubenko, and P. N. Babich, Statistical Methods in Medical/Biological Studies Using Excel [in Russian], Modmon, Kiev (2000).

    Google Scholar 

  22. V. Borovikov, Statistica Workmanship of Data Analysis Using a Computer: For Professionals [in Russian], Piter, St. Petersburg (2003).

    Google Scholar 

  23. N. A. Temour’yants, A. S. Kostyuk, and K. N. Tumanyants, “Effects of low-intensity extremely-high frequency electromagnetic radiation on the pain sensitivity of Helix albescens mollusks,” Millimetr. Volny Biol. Med., 23, No. 1, 39–45, 2010.

    Google Scholar 

  24. M. Kavaliers and K.-P. Ossenkopp, “Exposure to rotating magnetic fields alters morphine-induced behavioral responses in two strains of mice,” Neuropharmacology, 89, 440–443 (1984).

    Google Scholar 

  25. J. H. Jeong, K. B. Choi, B. C. Yi, et al., “Effects of extremely low frequency magnetic fields on pain thresholds in mice: roles of melatonin and opioids,” J. Auton. Pharmacol., 20, No. 4, 259–264 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. F. S. Prato, J. A. Robertson, D. Desjardins, et al., “Daily repeated magnetic field shielding induces analgesia in CD-1 mice,” Bioelectromagnetics, 26, No. 2, 109–117 (2005).

    Article  PubMed  Google Scholar 

  27. C. Del Seppia, P. Luschi, S. Ghione, et al., “Exposure to a hypogeomagnetic field or to oscillating magnetic fields similarly reduce stress-induced analgesia in C57 male mice,” Life Sci., 66, No. 14, 1299–1306 (2000).

    Article  PubMed  Google Scholar 

  28. E. Choleris, Del Seppia, A. W. Thomas, et al., “Shielding, but not zeroing of the ambient magnetic field reduces stress-induced analgesia in mice,” Proc. Biol. Sci. Roy. Soc., 269, 193–201 (2002).

    Article  CAS  Google Scholar 

  29. A. W. Thomas, M. Kavaliers, F. S. Prato, and K.-P. Ossenkopp, “Pulsed magnetic field induced “analgesia” in the land snail, Cepaea nemoralis, and the effects of μ, δ, and k opioid receptor agonists/antagonists,” Peptides, 18, 703–709 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. N. A. Temout’yants, Ye. N. Chuyan, K. N. Tumanyants, and A. S. Kostyuk, “Role of the opioid system in reactions of Helix albescens mollusks to the action of low-intensity extremely high-frequency electromagnetic radiation,” Millimetr. Volny Biol. Med., 24, 35–46, 2010.

    Google Scholar 

  31. X. Bao, Y. Shi, X. Huo, T. Song, “A possible involvement of β-endorphin, substance P, and serotonin in rat analgesia induced by extremely low frequency magnetic field,” Bioelectromagnetics, 27, No. 6, 467–472 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Temour’yants.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 43, No. 5, pp. 411–421, September–October, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Temour’yants, N.A., Kostyuk, A.S. Role of the Opioid System in the Modulation of Thermonociceptive Sensitivity of Mollusks Affected by Weak Electromagnetic Factors. Neurophysiology 43, 355–364 (2012). https://doi.org/10.1007/s11062-012-9234-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-012-9234-8

Keywords

Navigation