Skip to main content
Log in

Seasonal Features of the Effects of Blockade of Opioid Receptors on Adaptive Behavior in Hibernating Animals

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Studies of hibernating Yakutianian long-tailed ground squirrels (n = 42) addressed the effects of blockade of opioid receptors with naloxone on behavior in an open field and a holeboard chamber in the autumn (during preparation for hibernation) and in the spring (on waking at the end of hibernation). The inhibitory effects of opioid receptor blockade on systematic parameters of the overall level of CNS activation of the squirrel CNS were more marked in the autumn than in the spring. Biochemical analysis of monoamine contents revealed differences in the noradrenaline/serotonin ratio in the animals’ brains in spring and autumn. It is suggested that the interaction between the opioid and monoaminergic systems, working with a number of other factors, transfers homeostasis in hibernating animals to the new levels required both for preparation for entering hibernation – in autumn – and for transfer to the active homeothermic state – in spring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kh. Yu. Ismailova, T. M. Agaev, and T. P. Semenova, Individual Characteristics of Behavior, Nurlan, Baku (2007).

    Google Scholar 

  2. S. G. Kolaeva, “Winter hibernation,” Vestn. Rus. Akad. Nauk., 63, No. 12, 1076–1081 (1993).

    Google Scholar 

  3. V. S. Kurin, I. I. Miroshnichenko, and K. S. Raevskii, “Differences in the mechanisms of autoreceptor regulation of dopamine biosynthesis and release in subcortical structures in the rat brain,” Neirokhimiya, 7, No. 1, 3–8 (1988)

    Google Scholar 

  4. V. S. Kurin, P. M. Klodt, V. B. Narkevich, et al., “Behavioral and neurochemical aspects of the antidepressant actions of GSB-106 – a dipeptide fragment of brain-derived neurotrophic factor BDNF,” Eksperim. Klin. Farmakol., 75, 41–45 (2012).

    Google Scholar 

  5. A. N. Inozemtsev, L. F. Panchenko, S. V. Litvinova, et al., “Effects of fluoxetine on the interaction of the serotoninergic and endogenous opioid systems in the correction of cognitive functions and the formation of tolerance to the actions of morphine,” Narkologiya, 4, 14–21 (2008).

    Google Scholar 

  6. L. I. Murav’eva and A. Yu. Budantsev, “On the role of brain biogenic amines in regulating winter sleep,” Usp. Sovrem. Biol., 96, 117–124 (1983).

    Google Scholar 

  7. N. K. Popova, E. V. Naumenko, and V. G. Kolpakov, Serotonin and Behavior, Nauka, Novosibirsk (1978).

    Google Scholar 

  8. T. P. Semenova, “Characteristics of the monoaminergic regulation of higher nervous activity in hibernating animals (Citellus undulatus),” Zh. Vyssh. Nerv. Deyat., 54, No. 2, 174–182 (2004).

    CAS  Google Scholar 

  9. T. P. Semenova, I. A. Anoshkina, L. P. Dolgacheva, et al., “Seasonal characteristics of the monoaminergic regulation of behavior in hibernating animals,” Ros. Fiziol. Zh., 86, No. 9, 1188–1194 (2000).

    CAS  Google Scholar 

  10. A. Beckman and C. Llados-Eckman, “Antagonism of brain opioid peptides action reduces hibernation bout duration,” Brain Res., 328, No. 1, 201–205 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. C. V. Borlongan, Y. Wang, and T. P. Su, “Delta opioid peptide (D-Ala 2, D-Leu 5) enkephalin: linking hibernation and neuroprotection,” Front. Biosci., 9, 3392–3398 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. N. Bourhium, M. Kabine, and M. S. Elkebbaj, “Characterization of opioid peptides and opioid receptors in the brain of Jerboa (Jaculus orientalis), a hibernating rodent,” Brain Res. Bull., 44, No. 5, 615–620 (1997).

    Article  Google Scholar 

  13. Y. Cui, T. F. Lee, and L. C. H. Wang, “State-dependent changes of brain endogenous opioids in mammalian hibernation,” Brain Res. Bull., 40, No. 2, 129–133 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Y. Cui, T. F. Lee, J. Westly, and L. C. H. Wang, “Autoradiographic determination of changes in opioid receptor binding in the limbic system in the Columbian ground squirrel at different hibernation states,” Brain Res., 747, No. 2, 189–194 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. P. Devoto, G. Flore, L. Pira, et al., “Co-release of noradrenaline and dopamine in the prefrontal cortex after acute morphine and during morphine withdrawal,” Psychopharmacology (Berlin), 160, No. 2, 220–224 (2002)

    Article  CAS  Google Scholar 

  16. G. D. Ellison and D. E. Bresler, “Tests of emotional behavior in rats following depletion of norepinephrine, of serotonin, or of both,” Psychopharmacologia (Berlin), 34, 275–288 (1974).

    Article  CAS  Google Scholar 

  17. D. D. Feist and W. A. Galster, “Changes in hypothalamic catecholamines and serotonin during hibernation and arousal in the arctic ground squirrel,” Comp. Biochem. Physiol., 48, 653–662 (1974).

    Article  CAS  Google Scholar 

  18. Y. Feng, X. He, Y. Yang, et al., “Current research on opioid receptor function,” Curr. Drug Targets, 13, No. 2, 230–246 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. I. I. Haak, E. Mignot, T. S. Kilduff, et al., “Regional changes in central monoamine and metabolite levels during the hibernation cycle in the golden-mantled ground squirrel,” Brain Res., 563, 215–220 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. S. J. Mansour, H. Khachaturian, M. E. Lewis, et al., “Anatomy of CNS opioid receptors,” Trends Neurosci., 11, No. 2, 308–314 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. B. Michealidis, N. S. Loumbourdis, and E. Kapaki, “Analysis of monoamines? Adenosine and GABA in tissues of the land snail Helix lucorum and lizard Agama stellio during hibernation,” J. Exp. Biol., 205, No. 8, 1135–143 (2002).

    Google Scholar 

  22. A. R. McQuiston, “Opioid receptor activation normalizes temporo-ammonic pathway driven inhibition in hippocampal CA1,” Neuropharmacology, 60, No. 2–3, 472–479 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. H. Montel, K. Starke, and H. D. Taube, “Infl uence of morphine and naloxone on the release of noradrenaline from cerebellar cortex slices,” Naunyn Schmiedebergs Arch. Pharmacol., 288, 427–433 (1975).

    Article  CAS  PubMed  Google Scholar 

  24. F. Nurnberger, “The neuroendocrine system in hibernating mammals: present knowledge and open questions,” Cell Tiss. Res., 28H, 391–412 (1995).

    Article  Google Scholar 

  25. Z. Pirger, A. Lubitcs, D. Reglodi, et al., “Mass spectrometric analysis of activity-dependent changes of neuropeptide profile in the snail, Helix pomatia,” Neuropeptides, 44, No. 2, 475–483 (2010).

    Article  CAS  Google Scholar 

  26. K. R. Powell and L. A. Dykstra, “The role of serotonergic receptors in the effects of mu opioids in squirrel monkeys responding under a titration procedure,” Psychopharmacology, 126, No. 1, 42–49 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. T. P. Semenova, I. A. Anoshkina, B. H. Khomut, and S. G. Kolaeva, “Seasonal peculiarities of behavior of ground squirrels Citellus undulatus in the holeboard and open field tests,” Behav. Processes, 56, No. 1, 195–200 (2001).

    Article  PubMed  Google Scholar 

  28. K. B. Storey and J. M. Storey, “Metabolic rate depression in animals: transcriptional and translational controls,” Biol. Rev. Camb. Phil. Soc., 79, 207–233 (2004).

    Article  Google Scholar 

  29. Y. Tamura, M. Shintani, H. Inoue, et al., “Regulatory mechanism of body temperature in the central nervous system during the maintenance phase of hibernation in Syrian hamsters: involvement of beta- endorphin,” Brain Res., 1448, No. 1, 63–70 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. R. Tao and S. B. Auerback, “Opioid receptor subtypes differentially modulate serotonin efflux in the rat central nervous system,” J. Pharmacol. Exp. Ther., 303, No. 2, 1549–1556 (2002).

    Google Scholar 

  31. G. J. Wang, N. D. Volkow, J. S. Fowler, et al., “Dopamine D2 receptor availability in opiate-dependent subjects before and after naloxone-precipitated withdrawal,” Neuropsychopharmacology, 16, No. 2, 174–182 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. L.-C. Lu and Y.-P. Cai, “Effects of opioid receptor antagonists administration to suprachiasmatic nucleus on hibernation of ground squirrels Citellus dauricus,” Comp. Biochem. Physiol., 104, No. 2, 249–252 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Zakharova.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 99, No. 11, pp. 1265–1272, November, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenova, T.P., Zakharova, N.M. Seasonal Features of the Effects of Blockade of Opioid Receptors on Adaptive Behavior in Hibernating Animals. Neurosci Behav Physi 45, 658–663 (2015). https://doi.org/10.1007/s11055-015-0125-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0125-5

Keywords

Navigation