Skip to main content
Log in

Structure Dependence of the Calcium Dynamics in Purkinje Neuron Dendrites during Generation of Bursting Discharges: a Simulation Study

  • Published:
Neurophysiology Aims and scope

In the model of a cerebellar Purkinje neuron with reconstructed active dendrites, we investigated the impact of the ratio between volumes of the endoplasmic reticulum (organellar calcium store) and cytosol on the Ca2+ dynamics in asymmetrical parts of the dendritic arborization during generation of different structure-dependent patterns of bursting activity. Tonic synaptic excitation homogeneously distributed over the dendrites (a spatially homogeneous stationary input signal) caused spatially heterogeneous variations of the dendritic membrane potential (MP) accompanied by periodical or nonperiodical bursts of action potentials at the cell output. The MP waveforms recorded from the segments of asymmetrical dendrites were then applied to the membrane of selected dendrite segments as command voltages in a dynamic clamp mode. In these segments, the relative size of the stores was varied. This provided equal to each other local calcium currents and influxes into the cytosol of the segment differently filled with the organellar store. Regardless of the impulse pattern, microgeometry of the segment and the store modulated calcium transients exactly in the same way as in previous studies of electrical and concentration responses to local phasic synaptic excitation of the modeled neuron. Peak values of depolarization-induced elevations of the cytosolic Ca2+ concentration increased with the portion of the intracellular volume occupied by the store. The most important factor defining this dependence was the ratio of the membrane area vs the organelle-free cytosol volume of the dendritic segment. Concentrations of Са2+ deposited in equal-sized segments of asymmetrical parts of the dendritic arborization where asynchronous unequal variations of the MP were observed during generation of nonperiodical bursting at the output demonstrated considerable specificity. A greater amount of calcium was deposited in the segments staying, on average, in a high-depolarization state for a longer time (this intensified activation of calcium channels and amplified the corresponding Ca2+ influx into the cytosol). Hence, local dynamics of the Ca2+ concentration depend directly on local microgeometry and indirectly on global macrogeometry of the dendrite arborization, as the latter determines spatial asymmetry-related unequal transients in different parts of the dendritic arborization having active membrane properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Kostyuk and A. Verkhratsky, Calcium Signalling in the Nervous System, Wiley, Chichester (1995).

    Google Scholar 

  2. M. J. Berridge, “Neuronal calcium signalling,” Neuron, 21, No. 1, 13-26 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Calcium as a Cellular Regulator, E. Carafli and C. Klee (eds.), Oxford University Press, New York (1999).

  4. L. D. Pozzo-Miller, J. A. Connor, and S. B. Andrews, “Microheterogeneity of calcium signalling in dendrites,” J. Physiol., 525, 53-61 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. J. Meldolesi, A. Villa, P. Podini, et al., “Intracellular Ca2+ stores in neurons. Identification and functional aspects,” J. Physiol., 86, Nos. 1/3, 23-30 (1992).

    CAS  Google Scholar 

  6. W. G. Regehr and D. W. Tank, “Dendritic calcium dynamics,” Curr. Opin. Neurobiol., 4, No. 3, 373-382 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. J. Eilrs and A. Konnerth, “Dendritic signal integration,” Curr. Opin. Neurobiol., 7, No. 3, 385-390 (1997).

    Article  Google Scholar 

  8. M. Canepari, K. Vogt, and D. Zecevic, “Combining voltage and calcium imaging from neuronal dendrites,” Cell Mol. Neurobiol., 28, No. 8, 1079-1093 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. K. Takei, G. A. Mignery, E. Mugnaini, et al., “Inositol 1,4,5-trisphosphate receptor causes formation of ER cisternal stacks in transfected fibroblasts and in cerebellar Purkinje cells,” Neuron, 12, 327-342 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. A. Verkhratsky, “Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons,” Physiol. Rev., 85, 201-279 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. M. Bootman, O. Petersen, and A. Verkhratsky, “The endoplasmic reticulum is a focal point for co-ordination of cellular activity,” Cell Calcium, 32, 231-234 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. E. De Schutter and J. Bower, “An active membrane model of the cerebellar Purkinje cell. 1. Simulation of currentclamps in slice,” J. Neurophysiol., 71, 375-400 (1994).

    PubMed  Google Scholar 

  13. T. Miyasho, H. Takagi, H. Suzuki, et al., “Low-threshold potassium channels and a low-threshold calcium channel regulate Ca2+ spike firing in the dendrites of cerebellar Purkinje neurons: a modeling study,” Brain Res., 891, 106-115 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. P. Achard and E. De Schutter, “Calcium, synaptic plasticity and intrinsic homeostasis in Purkinje neuron models,” Front. Comput. Neurosci., 2, 8 (2008).

    Article  PubMed  Google Scholar 

  15. I. B. Kulagina, S. M. Korogod, G. Horcholle-Bossavit, et al., “The electro-dynamics of the dendritic space in Purkinje cells of the cerebellum,” Arch. Ital. Biol., 145, Nos. 3/4, 211-233 (2007).

    CAS  PubMed  Google Scholar 

  16. I. B. Kulagina, “Рhase relationship between calcium and voltage oscillations in different dendrites of Purkinje neuron,” Neurophysiology, 40, Nos. 5/6, 404-411 (2008).

    Article  CAS  Google Scholar 

  17. C. A. Ross, J. Meldolesi, T. A. Milner, et al., “Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons,” Nature, 339, No. 6224, 468-470 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. P. Volpe, A. Nori, A. Martini, et al., “Multiple/heterogeneous Ca2+ stores in cerebellum Purkinje neurons,” Comp. Biochem. Physiol. Comp. Physiol., 105, No. 2, 205-211 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. K. Takei, G. A. Mignery, E. Mugnaini, et al., “Inositol 1,4,5-trisphosphate receptor causes formation of ER cisternal stacks in transfected fibroblasts and in cerebellar Purkinje cells,” Neuron, 12, 327-342 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. M. Bootman, O. Petersen, and A. Verkhratsky, “The endoplasmic reticulum is a focal point for co-ordination of cellular activity,” Cell Calcium, 32, 231-234 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. D. Hillman and S. Chen, “Plasticity of synaptic size with constancy of total synaptic contact area on Purkinje cells in the cerebellum,” Prog. Clin. Biol. Res., Ser. A, 59, 229-245 (1981).

    Google Scholar 

  22. J. Takas and J. Hamori, “Developmental dynamics of Purkinje cells and dendritic spines in rat cerebellar cortex,” J. Neurosci. Res., 38, No. 5, 515-530 (1994).

    Article  Google Scholar 

  23. H. Kim, I. Kim, K. J. Lee, et al., “Specific plasticity of parallel fiber/Purkinje cell spine synapses by motor skill learning,” NeuroReport, 13, No. 13, 1607-1610 (2002).

    Article  PubMed  Google Scholar 

  24. S. M. Korogod and T. S. Novorodovskaya, “Impact of geometrical characteristics of the organellar store and organelle-free cytosol on intracellular calcium dynamics in the dendrite: a simulation study,” Neurophysiology, 41, No. 1, 16-27 (2009)

    Article  CAS  Google Scholar 

  25. T. S. Novorodovskaya and S. M. Korogod, “Comparative model analysis of calcium exchange between the cytosol and stores of mitochondria or endoplasmic reticulum,” Neurophysiology, 41, No. 5, 307-318 (2009).

    Article  CAS  Google Scholar 

  26. T. S. Novorodovskaya, “A simulation study of calcium dynamics features caused by exchange between the cytosol and organellar stores of neurons,” Neurophysiology, 41, No. 6, 380-388 (2009).

    Article  CAS  Google Scholar 

  27. S. M. Korogod and S. Tyč-Dumont, Electrical Dynamics of the Dendritic Space, Cambridge University Press, Cambridge, New York, Melbourne, etc. (2009).

    Book  Google Scholar 

  28. N. T. Carnevale and M. L. Hines, The NEURON Book, Cambridge University Press, Cambridge (2006).

    Book  Google Scholar 

  29. T. Inoue, Dynamics of Calcium and Its Roles in the Dendrite of the Cerebellar Purkinje Cell, Div. of Mol. Neurobiol., The Inst. of Med. Sci., The Univ. of Tokyo, Tokyo (2002).

  30. N. Holbro, A. Grunditz, and T. G. Oertner, “Differential distribution of endoplasmic reticulum controls metabotropic signaling and plasticity at hippocampal synapses,” Proc. Natl. Acad. Sci. USA, 106, No. 35, 15055-15060 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Novorodovskaya.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 42, No. 2, pp. 112-125, March-April, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novorodovskaya, T.S., Kulagina, I.B. Structure Dependence of the Calcium Dynamics in Purkinje Neuron Dendrites during Generation of Bursting Discharges: a Simulation Study. Neurophysiology 42, 92–103 (2010). https://doi.org/10.1007/s11062-010-9136-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-010-9136-6

Keywords

Navigation