Skip to main content
Log in

Dynamic Properties of Purkinje Cells Having Different Electrophysiological Parameters: a Model Study

  • Published:
Neurophysiology Aims and scope

Simple spikes and complex spikes are two distinguishing features in neurons of the cerebellar cortex; the motor learning and memory processes are dependent on these firing patterns. In our research, the detailed firing behaviors of Purkinje cells were investigated using a computer compartmental neuronal model. By means of application of numerical stimuli, the abundant dynamical properties involved in the multifarious firing patterns (such as the Max-Min potentials of each spike and period-adding/perioddoubling bifurcations) appeared. Neuronal interspike interval (ISI) diagrams, frequency diagrams, and current-voltage diagrams for different ions were plotted. Finally, Poincaré mapping was used as a theoretical method to markedly distinguish timing of the above firing patterns. Our simulation results indicated that firing of Purkinje cells varies dynamically depending on different electrophysiological parameters of these neurons, and the respective properties may play significant roles in the formation of the mentioned characteristics of dynamical firings in the coding strategy for information processing and learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Purves, G. J. Augustine, D. Fitzpatrick, et al., Neuroscience (4th edition), Sinauer Associates, Sunderland (MA) (2008).

    Google Scholar 

  2. R. D Traub, S. J Middleton, T. Knöpfel, and M. A. Whittington, “Model of very fast (>75 Hz) network oscillations generated by electrical coupling between the proximal axons of cerebellar Purkinje cells,” Eur. J. Neurosci., 28, No. 8, 1603-1616 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  3. J. I. Wadiche and C. E. Jahr, “Multivesicular release at climbing fiber-Purkinje cell synapses,” Neuron, 32, No. 2, 301-313 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. H. Anwar, S. Hong, and E. D. Schutter, “Controlling Ca2+-activated K+ channels with models of Ca2+ buffering in Purkinje cells,” The Cerebellum, 11, No. 3, 681-693 (2012).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. M. A. Kramer, R. D. Traub, and N. J. Kopell, “New dynamics in cerebellar Purkinje cells: torus canards,” Phys. Rev. Lett., 101, No. 6, 068103 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  6. A. M. Swensen and B. P. Bean, “Ionic mechanisms of burst firing in dissociated Purkinje neurons,” J. Neurosci., 23, No. 29, 9650-9663 (2003).

    CAS  PubMed  Google Scholar 

  7. I. M. Raman and B. P. Bean, “Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons,” J. Neurosci., 19, No. 5, 1663-1674 (1999).

    CAS  PubMed  Google Scholar 

  8. A. Roth and M. Häusser, “Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings,” J. Physiol., 535, 445-472 (2001).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. W. Akemann and T Knopfel, “Interaction of Kv3 potassium channels and resurgent sodium current influences the rate of spontaneous firing of Purkinje neurons,” J. Neurosci., 26, No. 17, 4602-4612 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. W. M. Yamada, C. Koch, and P. R. Adams, Methods in neuronal modeling, Cambridge: MIT Press, Cambridge, Massachusetts, London, England (1987).

    Google Scholar 

  11. A. L. Hodgkin, A. F Huxley, “Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo,” J. Physiol., 116, 449-472 (1952).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. E. D. Schutter and J. M. Bower, “An active membrane model of the cerebellar Purkinje cell. 1. Simulation of current clamps in slice,” J. Neurophysiol., 71, No. 1 375-400 (1994).

    PubMed  Google Scholar 

  13. T. Miyasho, H. Takagi, H. Suzuki, et al., “Low-threshold potassium channels and a low-threshold calcium channel regulate Ca2+ spike firing in the dendrites of cerebellar Purkinje neurons: A modeling study,” Brain Res., 891, 106-115 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. U. Wolf, M. J. Rapoport, and T. A. Schweizer, “Evaluating the affective component of the cerebellar cognitive affective syndrome,” J. Neuropsychiat. Clin. Neurosci., 21 No. 3, 245-53 (2009).

    Article  Google Scholar 

  15. M. D. Womack, C. Chevez, and K. Khodakhah, “Calcium-activated potassium channels are selectively coupled to P/Q-type calcium channels in cerebellar Purkinje neurons,” J. Neurosci., 24, No. 40, 8818-8822 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. P. Wang, Q. h. Song, Q. M Zeng, et al., “The research about the inductance characteristics of potassium channel,” Beijing Biomed. Engineer, 22, No. 1, 77-79 (2003).

    Google Scholar 

  17. Y. Loewenstein, S. Mahon, P. Chadderton, et al., “Bistability of cerebellar Purkinje cells modulated by sensory stimulation,” Nat. Neurosci., 8, 202-211 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. B. Fakler and J. P. Adelman, “Control of K(Ca) channels by calcium nano/microdomains,” Neuron, 59, No. 6, 873-881 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. J. Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X.C., Liu, S.Q., Ren, H.X. et al. Dynamic Properties of Purkinje Cells Having Different Electrophysiological Parameters: a Model Study. Neurophysiology 47, 2–10 (2015). https://doi.org/10.1007/s11062-015-9489-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-015-9489-y

Key words

Navigation