Skip to main content
Log in

Impact of Geometrical Characteristics of the Organellar Store and Organelle-Free Cytosol on Intracellular Calcium Dynamics in the Dendrite: a Simulation Study

  • Published:
Neurophysiology Aims and scope

The dependence of intracellular calcium dynamics on geometrical size relations between calcium-exchanging parts of the intracellular space was studied in mathematical models corresponding to a thin fragment of the Purkinje neuron spiny dendrite. The plasma membrane contained ion channels typical of this cell type, including channels that conduct an excitatory synaptic current, and ion pumps. The model equations took into account calcium exchange between the cytosol, extracellular medium, intracellular store (a cistern of the endoplasmic reticulum, ER), endogenous calcium buffers, and an exogenous buffer (fluorescent dye used in the experiments). The ER membrane contained the calcium pump and channels of calcium-dependent and inositol-3-phosphate-dependent calcium release, as well as leakage channels. With the compartment size fixed, the ER cistern diameter was varied so that the proportion of the organelle in the total volume changed from 1 to 36%. Under these conditions, identical synaptic excitation caused similar electrical reactions (calcium spikes) but different concentration responses. Equal increments in the ER diameter led to unequal, more pronounced at thicker diameters, increments of the peak cytosolic concentrations of Са2+ ([Ca2+] i ) and of a Са2+-fluorescent dye complex [CaD], as well as those of the Са2+ concentration in the dendrite ER (characterized by a shift from the basal level, Δ[Ca2+]ER). The changes in [Ca2+] i and [CaD] followed more adequately those in the volume of the organelle-free cytosol, while Δ[Ca2+]ER changes were more similar to those in the ER membrane area. Therefore, the relative occupancy of the intracellular volume by organellar calcium stores and their sizes in a dendritic compartment are important structural factors that essentially modulate the calcium dynamics, and this structural dependence can be adequately reflected in the experiments using fluorophores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Kostyuk and A. Verkhratsky, Calcium Signalling in the Nervous System, Wiley, Chichester (1995).

    Google Scholar 

  2. M. J. Brridge, “Neuronal calcium signalling,” Neuron, 21, No. 1, 13–26 (1998).

    Article  Google Scholar 

  3. Calcium as a Cellular Regulator, E. Carafli and C. Klee (eds.), Oxford Univ. Press, New York (1999).

    Google Scholar 

  4. L. D. Pzzo-Miller, J. A. Connor, and S. B. Andrews, “Microheterogeneity of calcium signalling in dendrites,” J. Physiol., 525, 53–61 (2000).

    Article  Google Scholar 

  5. W. Amada, C. Koch, and P. Adams, “Multiple channels and calcium dynamics,” in: Methods in Neuronal Modeling: From Synapses to Networks, C. Koch and I. Segev (eds.), MIT Press, Cambridge (1989), pp. 137–170.

    Google Scholar 

  6. C. Koch, Biophysics of Computations: Information Processing in Single Neurons, Oxford Univ. Press, New York (1999).

    Google Scholar 

  7. J. Meldolesi, A. Villa, P. Podini et al., “Intracellular Ca2+ stores in neurons. Identification and functional aspects,” J. Physiol., 86, Nos. 1/3, 23–30 (1992).

    CAS  Google Scholar 

  8. W. G. Regehr and D. W. Tank, “Dendritic calcium dynamics,” Curr. Opin. Neurobiol., 4, No. 3, 373–382 (1994).

    Article  PubMed  CAS  Google Scholar 

  9. J. Eilrs and A. Konnerth, “Dendritic signal integration,” Curr. Opin. Neurobiol., 7, No. 3, 385–390 (1997).

    Article  Google Scholar 

  10. M. Canepari, K. Vogt, and D. Zecevic, “Combining voltage and calcium imaging from neuronal dendrites,” Cell Mol. Neurobiol., 28, No. 8, 1079–1093 (2008).

    Article  PubMed  CAS  Google Scholar 

  11. E. De Schutter and J. Bower, “An active membrane model of the cerebellar Purkinje cell 1. Simulation of current-clamps in slice,” J. Neurophysiol., 71, 375–400 (1994).

    PubMed  Google Scholar 

  12. T. Miyasho, H. Takagi, H. Suzuki, et al., “Low-threshold potassium channels and a low-threshold calcium channel regulate Ca2+ spike firing in the dendrites of cerebellar Purkinje neurons: a modeling study,” Brain Res., 891, 106–115 (2001).

    Article  PubMed  CAS  Google Scholar 

  13. P. Achard and E. De Schutter, “Calcium, synaptic plasticity and intrinsic homeostasis in Purkinje neuron models,” Front Comput. Neurosci., 2, 8 (2008).

    Article  PubMed  Google Scholar 

  14. I. B. Kulagina, S. M. Korogod, G. Horcholle-Bossavit, et al., “The electrodynamics of the dendritic space in Purkinje cells of the cerebellum,” Arch. Ital. Biol., 145, Nos. 3/4, 211–233 (2007).

    PubMed  CAS  Google Scholar 

  15. I. B. Kulagina, “Рhase relationship between calcium and voltage oscillations in different dendrites of Purkinje neuron,” Neurophysiology, 40, Nos. 5/6, 404–416 (2008).

    Article  CAS  Google Scholar 

  16. C. A. Ross, J. Meldolesi, T. A. Milner, et al., “Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons,” Nature, 339, No. 6224, 468–470 (1989).

    Article  PubMed  CAS  Google Scholar 

  17. P. Volpe, A. Nori, A. Martini, et al., “Multiple/heterogeneous Ca2+ stores in cerebellum Purkinje neurons,” Comp. Biochem. Physiol. Comp. Physiol., 105, No. 2, 205–211 (1993).

    Article  PubMed  CAS  Google Scholar 

  18. K. Takei, G. A. Mignery, E. Mugnaini, et al., “Inositol 1,4,5-trisphosphate receptor causes formation of ER cisternal stacks in transfected fibroblasts and in cerebellar Purkinje cells,” Neuron, 12, 327–342 (1994).

    Article  PubMed  CAS  Google Scholar 

  19. A. Verkhratsky, “Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons,” Physiol. Rev., 85, 201–279 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. M. Bootman, O. Petersen, and A. Verkhratsky, “The endoplasmic reticulum is a focal point for co-ordination of cellular activity,” Cell Calcium, 32, 231–234 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. D. Hillman and S. Chen, “Plasticity of synaptic size with constancy of total synaptic contact area on Purkinje cells in the cerebellum,” Prog. Clin. Biol. Res., 59A, 229–245 (1981).

    PubMed  CAS  Google Scholar 

  22. J. Takas and J. Hamori, “Developmental dynamics of Purkinje cells and dendritic spines in rat cerebellar cortex,” J. Neurosci. Res., 38, No. 5, 515–530 (1994).

    Article  Google Scholar 

  23. H. Kim, I. Kim, K. J. Lee, et al., “Specific plasticity of parallel fiber/Purkinje cell spine synapses by motor skill learning,” NeuroReport, 13, No. 13, 1607–1610 (2002).

    Article  PubMed  Google Scholar 

  24. E. Bastianelli, “Distribution of calcium-binding proteins in the cerebellum,” Cerebellum, 2, No. 4, 242–262 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. H. Schmidt, K. M. Stiefel, P. Racay, et al., “Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k,” J. Physiol., 551, No. 1, 13–32 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. H. Schmidt, S. Kunerth, C. Wilms, et al., “Spino-dendritic cross-talk in rodent Purkinje neurons mediated by endogenous Ca2+-binding proteins,” J. Physiol., 581, No. 2, 619–629 (2007).

    Article  PubMed  Google Scholar 

  27. K. Harris and J. Stevens, “Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics,” J. Neurosci., 8, No. 12, 4455–4469 (1988).

    PubMed  CAS  Google Scholar 

  28. N. T. Carnevale and M. L. Hines, The NEURON Book, Cambridge Univ. Press, Cambridge (2006).

    Google Scholar 

  29. E. De Schutter and P. Smolen, “Calcium dynamics in large neuronal models,” in: Methods in Neuronal Modeling: from Ions to Networks, C. Koch and I. Segev (eds.), MIT Press, Cambridge (1998), pp. 211–250.

    Google Scholar 

  30. S. Dargan, B. Schwaller, and I. Parker, “Spatiotemporal patterning of IP3-mediated Ca2+ signals in Xenopus oocites by Ca2+-binding proteins,” J. Physiol., 556, No. 2, 447–461 (2004).

    Article  PubMed  CAS  Google Scholar 

  31. J. B. Sorensen, U. Matti, S. H. Wei, et al., “The SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosis,” Proc. Natl. Acad. Sci. USA, 99, No. 3, 1627–1632 (2002).

    Article  PubMed  CAS  Google Scholar 

  32. D. L. Wokosin, C. M. Loughrey, and G. L. Smith, “Characterization of a range of Fura dyes with two-photon excitation,” Biophys. J., 86, No. 3, 1726–1738 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. E. Neher, “Details of Ca2+ dynamics matter,” J. Physiol., 586, No. 8, 2031 (2008).

    Article  PubMed  CAS  Google Scholar 

  34. N. Volfovsky, H. Parnas, M. Segal, and E. Korkotian, “Geometry of dendritic spines affects calcium dynamics in hippocampal neurons: theory and experiments,” J. Neurophysiol., 82, No. 1, 450–462 (1999).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Korogod.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 41, No. 1, pp. 19–31, January–February, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korogod, S.M., Novorodovskaya, T.S. Impact of Geometrical Characteristics of the Organellar Store and Organelle-Free Cytosol on Intracellular Calcium Dynamics in the Dendrite: a Simulation Study. Neurophysiology 41, 16–27 (2009). https://doi.org/10.1007/s11062-009-9072-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-009-9072-5

Keywords

Navigation