Skip to main content

Advertisement

Log in

Central projections of the lagena (the third otolith endorgan of the inner ear) in the pigeon

  • Published:
Neurophysiology Aims and scope

Central projections of the lagena were studied in the pigeon using transport of biotinylated dextran amine (BDA) that was locally applied to the lagenar epithelium through the opened cochlear canal. Descending (dorsocaudal part) and superior (middle part) vestibular nuclei were the main rhombencephalon structures with the maximum density of labeled fibers and terminals. Lesser numbers of labeled fibers were observed in the ventral part of the lateral vestibular nucleus and also in the medial vestibular nucleus; single labeled fibers were found in the cochlear nuclei. In the cases where BDA diffused not only in the lagena but also on the basilar papilla after application of the marker to the cochlear canal, considerable numbers of labeled fibers were observed in the cochlear nuclei; apart from this, the pattern of distribution of labeled fibers in the vestibular nuclei did not differ in general from that described above (in the case of a sufficiently local application of BDA only to the lagena). Efferent lagenar neurons were localized ventrally with respect to the vestibular nuclei, in particular in the nucl. reticularis pontis caudalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. R. Lewis, E. L. Leverenz, and W. S. Bialek, “Comparative inner ear anatomy,” in: The Vertebrate Inner Ear, CRC Press, Boca Raton (1985), pp. 13–94.

    Google Scholar 

  2. L. Baird, “Anatomical features of the inner ear in submammalian vertebrates,” in: Handbook of Sensory Physiology, Vol. V/1, W. D. Keidel and W. D. Neff (eds.), Springer Verlag, Berlin, Heidelberg, New York (1974), pp. 159–212.

    Google Scholar 

  3. V. I. Khorevin, “The Lagena (the Third Otolith Endorgan in Vertebrates),” Neurophysiology, 40, No. 2, 142–159 (2008).

    Article  Google Scholar 

  4. G. Retzius, Das Gehörorgan der Wirbeltiere: I. Das Gehörorgan der Fische und Amphibien, Samson und Wallin, Stockholm (1881).

    Google Scholar 

  5. O. Lowenstein and T. D. M. Roberts, “The equilibrium function of the otolith organs of the thornback ray (Raja clavata),” J. Physiol., 110, 392–415 (1949).

    PubMed  CAS  Google Scholar 

  6. T. Furukawa and Y. Ishii, “Neurophysiological studies on hearing in goldfish,” J. Neurophysiol., 30, No. 6, 1377–1403 (1967).

    PubMed  CAS  Google Scholar 

  7. Z. Lu, Z. Xu, and W. J. Buchser, “Acoustic response properties of lagenar nerve fibers in the sleeper goby, Dormitator latifrons,” J. Comp. Physiol. Ser. A, 189, No. 3, 889–905 (2003).

    Article  CAS  Google Scholar 

  8. H. Straka, S. Holler, and F. Goto, “Patterns of canal and otolith afferent input convergence in frog second-order vestibular neurons,” J. Neurophysiol., 88, No. 5, 2287–2301 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. G. Retzius, Das Gehörorgan der Wirbeltiere: II. Das Gehörorgan der Reptilien, der Fögel und der Säugetiere, Samson und Wallin, Stockholm (1884).

    Google Scholar 

  10. J. M. Jorgensen and N. A. Locket, “The inner ear of the echidna Tachyglossus aculeatus: the vestibular sensory organs,” Proc. Biol. Sci., 260, No. 1358, 183–189 (1995).

    Article  PubMed  CAS  Google Scholar 

  11. J. Schwartzkopff and J. C. Bremond, “Method for mapping cochlear potentials in the bird,” J. physiol., 55, 495–518 (1963).

    CAS  Google Scholar 

  12. Y. Harada, “Experimental analysis of behavior of homing pigeons as a result of functional disorders of their lagena,” Acta Otolaryngol., 122, No. 2, 132–137 (2002).

    Article  PubMed  Google Scholar 

  13. B. Fritzsch, “Fast axonal diffusion of 3000 molecular weight dextran amines,” J. Neurosci. Method, 50, No. 1, 95–103 (1993).

    Article  CAS  Google Scholar 

  14. J. D. Dickman and Q. Fang, “Differential central projections of vestibular afferents in pigeons,” J. Comp. Neurol., 367, No. 1, 110–131 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. M. Zakir and J. D. Dickman, “Regeneration of vestibular otolith afferents after ototoxic damage,” J. Neurosci., 15, No. 11, 2881–2893 (2006).

    Article  Google Scholar 

  16. H. J. Karten and W. Hodos, A Stereotaxic Atlas of the Brain of Pigeon (Columba livia), Hopkins Press, Baltimore, Maryland (1967).

    Google Scholar 

  17. R. G. Cox and K. D. Peusner, “Horseradish peroxidase labeling of the efferent and afferent pathways of the avian tangential vestibular nucleus,” J. Comp. Neurol., 296, No. 2, 324–341 (1990).

    Article  PubMed  CAS  Google Scholar 

  18. R. L. Boord and G. L. Rasmussen, “Projection of the cochlear and lagenar nerves on the cochlear nucleus of the pigeon,” J. Comp. Neurol., 120, No. 3, 463–475 (1963).

    Article  PubMed  CAS  Google Scholar 

  19. C. Köppl and C. E. Carr, “Computational diversity in the cochlear nucleus angularis of the barn owl,” J. Neurophysiol., 89, No. 4, 2313–2329 (2003).

    Article  PubMed  Google Scholar 

  20. A. Kaiser and G. A. Manley, “Brainstem connections of the macula lagenae in the chicken,” J. Comp. Neurol., 374, No 1, 108–117 (1996).

    Article  PubMed  CAS  Google Scholar 

  21. L. L. Bruce, J. Kingsley, D. H. Nichols, and B. Fritzsch, “The development of vestibulocochlear efferents and cochlear afferents in mice,” Int. J. Dev. Neurosci., 15, Nos. 4/5, 671–692 (1997).

    Article  PubMed  CAS  Google Scholar 

  22. R. R. Gacek, “The course and central termination of first-order neurons supplying vestibular endorgans in the cat,” Acta Otolaryngol., Suppl., 254, 1–66 (1969).

    CAS  Google Scholar 

  23. B. M. Stein and M. B. Carpenter, “Central projections of portions of the vestibular ganglia innervating specific parts of the labyrinth in the rhesus monkey,” Am. J. Anat., 120, No. 2, 281–317 (1967).

    Article  Google Scholar 

  24. G. A. Kevetter and A. A. Perachio, “Distribution of vestibular afferents that innervate the sacculus and posterior canal in the gerbil,” J. Comp. Neurol., 254, No. 3, 410–424 (1986).

    Article  PubMed  CAS  Google Scholar 

  25. S. L. Cochran, P. Kasik, and W. Precht, “Pharmacological aspects of excitatory synaptic transmission to second-order vestibular neurons in the frog,” Synapse, 1, No. 1, 102–123 (1987).

    Article  PubMed  CAS  Google Scholar 

  26. D. Dememes, J. P. Mothet, and M. T. Nicolas, “Cellular distribution of D-serine, serine racemase and D-amino acid oxidase in the rat vestibular sensory epithelia,” Neuroscience, 137, No. 3, 991–997 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. I. Reichenberger and N. Dieringer, “Size-related colocalization of glycine and glutamate immunoreactivity in frog and rat vestibular afferents,” J. Comp. Neurol., 349, No. 4, 603–614 (1994).

    Article  PubMed  CAS  Google Scholar 

  28. P. Straka and N. Dieringer, “Uncrossed disynaptic inhibition of second-order vestibular neurons and its interaction with monosynaptic excitation from vestibular nerve afferent fibers in the frog,” J. Neurophysiol., 76, No. 5, 3087–3101 (1996).

    PubMed  CAS  Google Scholar 

  29. X. Si, M. M. Zakir, and J. D. Dickman, “Afferent innervation of the utricular macula in pigeons,” J. Neurophysiol., 89, No. 3, 1660–1677 (2003).

    Article  PubMed  Google Scholar 

  30. M. Zakir, D. Huss, and J. D. Dickman, “Afferent innervation patterns of the saccule in pigeons,” J. Neurophysiol., 89, No. 1, 534–550 (2003).

    Article  PubMed  CAS  Google Scholar 

  31. R. L. Boord and H. J. Karten, “The distribution of primary lagenar fibers within the vestibular nuclear complex of the pigeon,” Brain, Behav., Evolut., 10, Nos. 1/3, 228–235 (1974).

    Article  CAS  Google Scholar 

  32. D. W. Schwarz and I. E. Schwarz, “Projection of afferents from individual vestibular sense organs to the vestibular nuclei in the pigeon,” Acta Otolaryngol., 102, Nos. 5/6, 463–473 (1986).

    Article  PubMed  CAS  Google Scholar 

  33. G. E. Meredith, “Comparative view of the central organization of afferent and efferent circuitry for the inner ear,” Acta Biol. Hung., 39, Nos. 2/3, 229–249 (1988).

    PubMed  CAS  Google Scholar 

  34. S. M. Highstein, R. Kitch, J. Carey, and R. Baker, “Anatomical organization of the brainstem octavolateralis area of the oyster toadfish, Opsanus tau,” J. Comp. Neurol., 319, No. 4, 501–518 (1992).

    Article  PubMed  CAS  Google Scholar 

  35. C. Matesz, “Central projection of the VIIIth cranial nerve in the frog,” Neuroscience, 4, No. 5, 2061–2071 (1979).

    Article  PubMed  CAS  Google Scholar 

  36. N. H. Barmak, “Central vestibular system: vestibular nuclei and posterior cerebellum,” Brain Res. Bull., 60, Nos. 5/6, 511–541 (2003).

    Article  Google Scholar 

  37. C. Díaz and J. C. Glover, “Comparative aspects of the hodological organization of the vestibular nuclear complex and related neuron populations,” Brain Res. Bull., 57, Nos. 3/4, 307–312 (2002).

    Article  PubMed  Google Scholar 

  38. H. Straka, S. Holler, F. Goto, et al., “Differential spatial organization of otolith signals in frog vestibular nuclei,” J. Neurophysiol., 90, No. 5, 3501–3512 (2003).

    Article  PubMed  Google Scholar 

  39. J. A. Buttner-Ennever, “A review of otolith pathways to brainstem and cerebellum,” Ann. New York Acad. Sci., 871, 51–64 (1999).

    Article  CAS  Google Scholar 

  40. K. Kushiro, M. Zakir, M. H. Sato, et al., “Saccular and utricular inputs to single vestibular neurons in cats,” Exp. Brain Res., 131, No. 3, 406–415 (2000).

    Article  PubMed  CAS  Google Scholar 

  41. Ramon y Cajal, “Les ganglions terminaux du nerf acoustique des oisaux,” Trab. Inst. Cajal Invest. Biol., 6, 141–219 (1908).

    Google Scholar 

  42. M. Burian, W. Gstoettner, and R. Zundritsch, “Saccular afferent fibers to the cochlear nucleus in the guinea pig,” Arch. Otorhinolaryngol., 246, No. 5, 238–241 (1989).

    Article  PubMed  CAS  Google Scholar 

  43. J. Strutz, “The origin of efferent labyrinthine fibers: a comparative study in vertebrates,” Arch. Otorhinolaryngol., 234, No. 2, 139–143 (1982).

    Article  PubMed  CAS  Google Scholar 

  44. G. A. Kevetter and A. A. Perachio, “Projections from the sacculus to the cochlear nuclei in the Mongolian gerbil,” Brain, Behav., Evolut., 34, No. 4, 193–200 (1989).

    Article  CAS  Google Scholar 

  45. J. E. Schwarz, D. W. Schwarz, J. M. Fredrickson, and J. P. M. Landolt, “Efferent vestibular neurons: a study employing retrograde tracer methods in the pigeon (Columba livia),” J. Comp. Neurol., 196, No. 1, 1–12 (1981).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Khorevin.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 40, No. 3, pp. 199–210, May–June, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khorevin, V.I. Central projections of the lagena (the third otolith endorgan of the inner ear) in the pigeon. Neurophysiology 40, 167–177 (2008). https://doi.org/10.1007/s11062-008-9033-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-008-9033-4

Keywords

Navigation