Skip to main content

Advertisement

Log in

The lagena (the third otolith endorgan in vertebrates)

  • Reviews
  • Published:
Neurophysiology Aims and scope

Abstract

In this review, the structure and functions of the lagena (the third otolith organ) in an evolutionary lineage of the vertebrates are described and discussed. The lagenar macula appears first in the posterior part of the sacculus of elasmobranchs; in these animals, the lagena is considered to be involved in the balance support (orientation with respect to the gravitation force). The lagena as a separate endorgan has been described in teleost fishes; in some species, the lagena is connected with the sacculus, while in other species the interrelations of these structures can be dissimilar. The lagena supplements the functions of the sacculus; in fishes (animals with no special organ of hearing), it is involved in discrimination of sound oscillations, identification of the gravitation vector, and orientation in the course of movements within the vertical plane. In amphibians, the lagena is localized in the posterior part of the sacculus, near the auditory structures; it performs mostly vestibular and (to a much lesser extent) auditory functions. In amniotes, the lagena was first separated from the sacculus; it is localized in the cochlear canal, distally with respect to the hearing organ. Information on the functions of the lagena in amniotes is rather limited and contradictory. Central projections of this organ have been examined practically only in birds. Lagenar afferents project to the vestibular nuclei and cerebellum, while some fibers come to the auditory nuclei of the medulla. The lagena in birds can be related to their navigation abilities (birds are supposed to be capable of orienting within the magnetic field of the Earth due to the magnetic properties of the lagenar otoconia; this structure can also provide detection of movements along the vertical axis. The close proximity between the otolithic and auditory endorgans in the cochlear canal of amniotes can be indicative of the functional significance of these interrelations. This aspect, however, remains at present undiscovered. In mammals (except Monotremata), there is no lagena as an independent endorgan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Retzius, Das Gehörorgan der Wirbeltiere: I. Das Gehörorgan der Fische und Amphibien, Samson und Wallin, Stockholm (1881).

    Google Scholar 

  2. H. V. Wilson and J. E. Mattocks, “The lateral sensory anlage in the salmon,” Anatomischer Anzeiger., 13, 658–660 (1897).

    Google Scholar 

  3. J. Carey and N. Amin, “Evolutionary changes in the cochlea and labyrinth: solving the problem of sound transmission to the balance organs of the inner ear,” Anat. Rec., 288, Part A, 482–490 (2006).

    Article  Google Scholar 

  4. J. G. Maisey, “Remarks on the inner ear of elasmobranchs and its interpretation from skeletal labyrinth morphology,” J. Morphol., 250, 236–264 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. E. R. Lewis, E. L. Leverenz, and W. S. Bialek, “Comparative inner ear anatomy,” in: The Vertebrate Inner Ear, CRC Press, Boca Raton (1985), pp. 13–94.

    Google Scholar 

  6. I. L. Baird, “Anatomical features of the inner ear in submammalian vertebrates,” in: Handbook of Sensory Physiology, Vol. V/1, W. D. Keidel and W. D. Neff (eds.), Springer-Verlag, Berlin, Heidelberg, New York (1974), pp. 159–212.

    Google Scholar 

  7. “Fishes,” in: Animal Life [in Russian], Vol. 4, Part 1, V. E. Sokolov (ed.), Prosveshcheniye, Moscow (1983).

  8. J. M. Jørgensen, M. Shichiri, and F. A. Geneser, “Morphology of the hagfish inner ear,” Acta Zool. (Stockholm), 79, No. 3, 251–256 (1998).

    Google Scholar 

  9. Yi-Hsin Lee, Hung-Tu Huang, and Hin-Kiu Mok, “Microscopic structure and digital morphometric analysis of the statoconia of hagfish, Paramyxine nelsoni (Myxiniformes),” Zool. Studies, 46, No. 1, 1–5 (2007).

    Google Scholar 

  10. D. Carlstom, “A crystallographic study of vertebrate otoliths,” Biol. Bull., 125, 441–463 (1963).

    Article  Google Scholar 

  11. O. Löwenstein and R. A. Thornhill, “The labyrinth of Myxine: anatomy, ultrastructure and electrophysiology,” Proc. Roy. Soc. London, Ser. B, 176, 21–42 (1970).

    Google Scholar 

  12. F. Amemiya, R. Kishida, R. C. Goris, et al., “Primary vestibular projections in the hagfish, Eptatretus burgeri,” Brain Res., 337, No. 1, 73–79 (1985).

    Article  PubMed  CAS  Google Scholar 

  13. O. Löwenstein, M. P. Osborne, and R. A. Thornhill, “The anatomy and ultrastructure of the labyrinth of the lamprey (Lampetra fluviatilis L.),” Proc. Roy. Soc. London, Ser. B, 170, No. 19, 113–134 (1968).

    Google Scholar 

  14. O. Löwenstein, “The electrophysiological study of the responses of the isolated labyrinth of the lamprey (Lampetra fluviatilis) to angular acceleration, tilting and mechanical vibration,” Proc. Roy. Soc. London, Ser. B, 174, No. 37, 419–434 (1970).

    Google Scholar 

  15. B. Avallone, U. Fascio, A. Senatore, et al., “The membranous labyrinth during larval development in lamprey (Lampetra planeri, Bloch, 1784),” Hear. Res., 201, Nos. 1/2, 37–43 (2005).

    Article  PubMed  Google Scholar 

  16. D. V. Lychakov and E. A. Lavrova, “The content of electrolytes (Na, K, Ca, Mg) in vertebrate otoliths and otoconia,” Zh. Évol. Biokhim. Fiziol., 30, No. 1, 99–105 (1994).

    PubMed  CAS  Google Scholar 

  17. J.-F. Pflieger and R. Dubuc, “The relationship between vestibular primary afferents and vestibulospinal neurons in lampreys,” J. Comp. Neurol., 427, No. 2, 255–273 (2000).

    Article  PubMed  CAS  Google Scholar 

  18. H. Koyama, R. Kishida, R. C. Goris, and T. Kusunoki, “Afferent and efferent projections of the VIIIth cranial nerve in the lamprey Lampetra japonica,” J. Comp. Neurol., 280, No. 4, 663–671 (1989).

    Article  PubMed  CAS  Google Scholar 

  19. B. Fritzsch, R. Dubuc, Y. Ohta, et al., “Efferents to the labyrinth of the river lamprey (Lampetra fluviatilis) as revealed with retrograde tracing techniques,” Neurosci. Lett., 96, No. 3, 241–246 (1989).

    Article  PubMed  CAS  Google Scholar 

  20. B. Groombridge and M. Jenkins, World Atlas of Biodiversity, California Univ. Press, California (2002).

    Google Scholar 

  21. E. G. Wever, “Evolution of vertebrate hearing,” in: Handbook of Sensory Physiology, Vol. V/1, W. D. Keidel and W. D. Neff (eds.), Springer-Verlag, Berlin, Heidelberg, New York (1974), pp. 423–454.

    Google Scholar 

  22. O. Löwenstein, M. P. Osborne, and J. Wersäll, “Structure and innervation of the sensory epithelia of the labyrinth in the thornback ray (Raja clavata),” Proc. Roy. Soc. London, Ser. B, 160, 1–12 (1964).

    Google Scholar 

  23. O. Löwenstein and T. D. M. Roberts, “The equilibrium function of the otolith organs of the thornback ray (Raja clavata),” J. Physiol., 110, 392–415 (1949).

    PubMed  Google Scholar 

  24. O. Löwenstein and T. D. M. Roberts, “The localization and analysis of the responses to vibration from the isolated elasmobranch labyrinth. A contribution to the problem of the evolution of hearing in vertebrates,” J. Physiol., 114, 471–489 (1951).

    PubMed  Google Scholar 

  25. M. A. Barry, “Afferent and efferent connections of the primary octaval nuclei in the clearnose skate, Raja eglanteria,” J. Comp. Neurol., 266, No. 4, 457–477 (1987).

    Article  PubMed  CAS  Google Scholar 

  26. P. Payan, A. Edeyer, H. de Pontual, et al., “Chemical composition of saccular endolymph and otolith in fish inner ear: lack of spatial uniformity,” Am. J. Physiol. Regulat. Integrat. Comp. Physiol., 277, 123–131 (1999).

    Google Scholar 

  27. R. H. Anken, “On the role of the central nervous system in regulating the mineralization of inner-ear otoliths of fish,” Protoplasma, 229, Nos. 2/4, 205–208 (2006).

    Article  PubMed  Google Scholar 

  28. D. V. Lychakov and Y. T. Rebane, “Otolith regularities,” Hear. Res., 143, Nos. 1/2, 83–102 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. Z. Lu and A. N. Popper, “Morphological polarizations of sensory hair cells in the three otolithic organs of a teleost fish: fluorescent imaging of ciliary bundles,” Hear. Res., 126, Nos. 1/2, 47–57 (1998).

    Article  PubMed  CAS  Google Scholar 

  30. W. M. Saidel and A. N. Popper, “Spatial organization in the sacculus and lagena of a teleost: hair cell pattern and innervation,” J. Morphol., 177, No. 3, 301–317 (1983).

    Article  PubMed  CAS  Google Scholar 

  31. C. F. Werner, Das Gehororgan der Wierbeltiere und des Menschen, Thieme, Leipzig (1960).

    Google Scholar 

  32. C. Platt, J. M. Jørgensen, and A. N. Popper, “The inner ear of the lungfish Protopterus,” J. Comp. Neurol., 471, No. 3, 277–288 (2004).

    Article  PubMed  Google Scholar 

  33. J. S. Y. Chang, A. N. Popper, and W. M. Saidel, “Heterogeneity of sensory hair cells in a fish ear,” J. Comp. Neurol., 324, No. 4, 621–640 (1992).

    Article  PubMed  CAS  Google Scholar 

  34. W. N. Tavolga, “Sound production and detection,” in: Fish Physiology, Vol. 5, W. S. Hoar and D. J. Randall (eds.), Academic Press, New York (1971), pp. 135–205.

    Google Scholar 

  35. L. Prosser, “Mechanoreception, phonoreception, and equilibrium sensation,” in: Comparative Physiology of Animals [in Russian], Vol. 2, L. Prosser (ed.), Mir, Moscow (1977), pp. 350–431.

    Google Scholar 

  36. W. N. Tavolga and J. Wodinsky, “Auditory capacities in fishes. Pure tone thresholds in nine species of marine teleosts,” Bull. Am. Mus. Nat. Hist., 136, 179–239 (1963).

    Google Scholar 

  37. O. W. Henson, Jr., “Comparative anatomy of the middle ear,” in: Handbook of Sensory Physiology, Vol. V/1, W. D. Keidel and W. D. Neff (eds.), Springer-Verlag, Berlin, Heidelberg, New York (1974), pp. 39–110.

    Google Scholar 

  38. D. Poggendorf, “Die absoluten Horschwellen des Zwergwelses (Amirus nebulosus) und Beitrag zur Physik des Weberschen Apparatus der Ostariophysen,” Z. Vergl. Physiol., 34, 222–257 (1952).

    Article  Google Scholar 

  39. T. Furukawa and Y. Ishii, “Neurophysiological studies on hearing in goldfish,” J. Neurophysiol., 30, No. 6, 1377–1403 (1967).

    PubMed  CAS  Google Scholar 

  40. P. L. Edds-Walton and A. N. Popper, “Dendritic arbors on the sacculus and lagena in the ear of the goldfish, Carassius auratus,” Hear. Res., 141, Nos. 1/2, 229–242 (2000).

    Article  PubMed  CAS  Google Scholar 

  41. M. J. Cohen and H. E. Winn, “Electrophysiological observations on hearing and sound production in the fish, Porichthys notatus,” J. Exp. Zool., 165, No. 3, 355–369 (1967).

    Article  PubMed  CAS  Google Scholar 

  42. A. N. Popper and W. N. Tavolga, “Structure and function of the ear in the marine catfish, Arius felis,” J. Comp. Physiol., 44, No. 1, 27–34 (1981).

    Article  Google Scholar 

  43. C. A. McCormick, “Brainstem acoustic areas in the marine catfish, Arius felis,” Brain, Behav., Evolut., 57, 134–149 (2001).

    Article  CAS  Google Scholar 

  44. Z. Lu, Z. Xu, and W. J. Buchser, “Acoustic response properties of lagenar nerve fibers in the sleeper goby, Dormitator latifrons,” J. Comp. Physiol., Ser. A, 189, No. 3, 889–905 (2003).

    Article  CAS  Google Scholar 

  45. C. A. McCormick and M. R. Braford, Jr., “Organization of inner ear endorgan projections in the goldfish, Carassius auratus,” Brain, Behav., Evolut., 43, Nos. 4/5, 189–205 (1994).

    Article  CAS  Google Scholar 

  46. S. M. Tomchik and Z. Lu, “Octavolateral projections and organization in the medulla of a teleost fish, the sleeper goby (Dormitator latifrons),” J. Comp. Neurol., 481, No. 1, 96–117 (2005).

    Article  PubMed  Google Scholar 

  47. G. Roth, U. Dicke, and K. Nishikawa, “How do ontogeny, morphology, and physiology of sensory systems constrain and direct the evolution of amphibians?” Am. Naturalist, 139 (Supplement: Sensory drive. Does sensory drive biology bias or constrain the direction of evolution?), S105–S124 (1992).

    Article  Google Scholar 

  48. I. A. Vartanyan, “Comparative physiology of the auditory system,” in: Auditory System [in Russian], Nauka, Leningrad (1990), pp. 514–574.

    Google Scholar 

  49. B. Fritzsch and M. H. Wake, “The inner ear of gymnophione amphibians and its nerve supply: a comparative study of regressive events in a complex sensory system,” Zoomorphology, 108, 210–217 (1988).

    Article  Google Scholar 

  50. T. Kido and M. Takahashi, “Scanning electron microscopic study of amphibians otoconia,” Auris Nasus Larynx., 24, No. 2, 125–130 (1997).

    Article  PubMed  CAS  Google Scholar 

  51. M. Oukda, A. Bautz, H. Membre, et al., “Appearance and evolution of calcitic and aragonitic otoconia during Pleurodeles waltl development,” Hear. Res., 137, Nos. 1/2, 114–126 (1999).

    Article  PubMed  CAS  Google Scholar 

  52. C. D. Geisler, W. A. Vanbergeijk, and L. S. Frishkopf, “The inner ear of the bullfrog,” J. Morphol., 114, No. 1, 43–57 (1964).

    Article  PubMed  CAS  Google Scholar 

  53. L. S. Frishkopf and C. D. Geisler, “Peripheral origin of auditory responses from the eighth nerve of the bullfrog,” J. Acoust. Soc. Am., 40, 469–472 (1966).

    Article  Google Scholar 

  54. A. S. Feng, P. M. Narins, and R. R. Capranica, “Three populations of primary auditory fibers in the bullfrog (Rana catesbeiana): Their peripheral origins and frequency sensitivities,” J. Comp. Physiol., Ser. A, 100, No. 1, 221–229 (1975).

    Article  Google Scholar 

  55. B. Fritzsch, “The ear of Latimeria chalumnae revisited,” Zoology, 106, 243–248 (2003).

    PubMed  Google Scholar 

  56. I. P. J. MacNaughton and W. J. McNally, “Some experiments which indicate that the frog’s lagena has an equilibrium function,” J. Laryngol. Otol., 61, 204–214 (1946).

    Article  Google Scholar 

  57. J. Caston, W. Precht, and R. H. I. Blanks, “Response characteristics of frog’s lagena afferents to natural stimulation,” J. Comp. Physiol., Ser. A, 118, No. 1, 273–289 (1977).

    Article  Google Scholar 

  58. E. R. Lewis and C. W. Li, “Hair cell types and distributions in the otolithic and auditory organs of the bullfrog,” Brain Res., 83, No. 1, 35–50 (1975).

    Article  Google Scholar 

  59. R. A. Baird and E. R. Lewis, “Correspondences between afferent innervation patterns and response dynamics in the bullfrog utriculus and lagena,” Brain Res., 369, No. 1, 48–64 (1986).

    Article  PubMed  CAS  Google Scholar 

  60. K. A. Cortopassi and E. R. Lewis, “A comparison of the linear tuning properties of two classes of axons in the bullfrog lagena,” Brain, Behav., Evolut., 51, No. 6, 331–348 (1998).

    Article  CAS  Google Scholar 

  61. B. M. Jøgensen and J. Christensen-Dalsgaard, “Peripheral origins and functional characteristics of vibration-sensitive VIIIth nerve fibers in the frog Rana temporaria,” J. Comp. Physiol., Ser. A, 169, No. 3, 341–347 (1991).

    Google Scholar 

  62. C. Matesz, “Central projection of the VIIIth cranial nerve in the frog,” Neuroscience, 4, No. 5, 2061–2071 (1979).

    Article  PubMed  CAS  Google Scholar 

  63. A. Kuruvilla, S. Sitko, I. R. Schwartz, and V. Honrubia, “Central projections of primary vestibular fibers in the bullfrog: I. The vestibular nuclei,” Laryngoscope, 95, No. 6, 692–707 (1985).

    Article  PubMed  CAS  Google Scholar 

  64. A. Birinyi, H. Straka, C. Matesz, and N. Dieringer, “Location of dye-coupled second-order and of efferent vestibular neurons labeled from individual semicircular canal or otolith organs in the frog,” Brain Res., 921, Nos. 1/2, 44–59 (2001).

    Article  PubMed  CAS  Google Scholar 

  65. R. L. Boord, L. B. Grochow, and L. S. Frishkopf, “Organization of the posterior ramus and ganglion of the eight cranial nerve of the bullfrog Rana catesbiana,” Am. Zool., 10, 555 (1970).

    Google Scholar 

  66. R. F. Dunn, “Nerve fibers of the eighth nerve and their distribution to the sensory nerves of the inner ear in the bullfrog,” J. Comp. Neurol., 182, No. 4, 621–636 (1978).

    Article  PubMed  CAS  Google Scholar 

  67. V. Honrubia, L. F. Hoffmann, S. Sitko, et al., “Anatomic and physiological correlates in bullfrog vestibular nerve,” J. Neurophysiol., 61, No. 4, 688–701 (1989).

    PubMed  CAS  Google Scholar 

  68. H. Straka, S. Holler, and F. Goto, “Patterns of canal and otolith afferent input convergence in frog second-order vestibular neurons,” J. Neurophysiol., 88, No. 5, 2287–2301 (2002).

    Article  PubMed  CAS  Google Scholar 

  69. B. J. Hess and W. Precht, “Identification of vestibular sense organs responsible for maculo-ocular reflexes in the frog,” Exp. Brain Res., 55, No. 3, 570–573 (1984).

    Article  PubMed  CAS  Google Scholar 

  70. E. Rácz, T. Bácskai, G. Halasi, et al., “Organization of dye-coupled cerebellar granule cells labeled from afferent vestibular and dorsal root fibers in the frog Rana esculenta,” J. Comp. Neurol., 496, No. 3, 382–394 (2006).

    Article  PubMed  Google Scholar 

  71. “Amphibians and reptiles,” in: Animals Life [in Russian], Vol. 4, Part 2, A. G. Bannikov (ed.). Prosveshchenye, Moscow (1969).

  72. D. D. Gehr and Y. L. Werner, “Age effects and size effects in the ears of gekkonomorph lizards: inner ear,” Hear. Res., 200, Nos. 1/2, 38–50 (2005).

    Article  PubMed  Google Scholar 

  73. G. Retzius, Das Gehörorgan der Wirbeltiere: II. Das Gehörorgan der Reptilien, der Fögel und der Säugetiere, Samson und Wallin, Stockholm (1884).

    Google Scholar 

  74. M. R. Miller, “The cochlear duct of lizards and snakes,” Am. Zool., 6, No. 3, 421–429 (1966).

    PubMed  CAS  Google Scholar 

  75. M. Piscopo, B. Avallone, L. D’Angelo, et al., “Localization of calbindin D-28K in the otoconia of lizard Podarcis sicula,” Hear. Res., 189, Nos. 1/2, 76–82 (2004).

    Article  PubMed  CAS  Google Scholar 

  76. “Birds,” in: Animals Life [in Russian], Vol. 5, N. A. Glazkov and A. V. Mikheyev, (eds.), Prosveshchenye, Moscow (1970).

  77. Y. Harada, M. Taniguchi, H. Namatame, and A. Iida, “Magnetic materials in otoliths of bird and fish lagena and their function,” Acta Otolaryngol., 121, No. 5, 590–595 (2001).

    Article  PubMed  CAS  Google Scholar 

  78. Y. Harada, “Experimental analysis of behavior of homing pigeons as a result of functional disorders of their lagena,” Acta Otolaryngol., 122, No. 2, 132–137 (2002).

    Article  PubMed  Google Scholar 

  79. U. Rosenhall, “Some morphological principles of the vestibular maculae in birds,” Arch. Klin. Exp. Ohren Nasen Kehlkopfheilkd, 197, 154–182 (1970).

    Article  PubMed  CAS  Google Scholar 

  80. A. Kaiser and G. A. Manley, “Brainstem connections of the macula lagenae in the chicken,” J. Comp. Neurol., 374, No. 1, 108–117 (1996).

    Article  PubMed  CAS  Google Scholar 

  81. T. Takasaka and C. A. Smith, “Structure and innervation of the pigeon basilar papilla,” Anat. Rec., 160, 438 (1968).

    Google Scholar 

  82. K. Ishiyama, “Ultrastructure and peculiarities of the otolith lagena in pigeons,” Nippon Jibiinkoka Gakkai Kaiho, 98, No. 5, 781–788 (1995).

    PubMed  CAS  Google Scholar 

  83. H. H. Lindeman, “Studies on the morphology of the sensory region of the vestibular apparatus,” Ergebn. Anat. Eutwiekle-Gesch., 42, No. 1, 1–113 (1969).

    CAS  Google Scholar 

  84. X. Si, M. M. Zakir, and J. D. Dickman, “Afferent innervation of the utricular macula in pigeons,” J. Neurophysiol., 89, No. 3, 1660–1677 (2003).

    Article  PubMed  Google Scholar 

  85. M. Zakir, D. Huss, and J. D. Dickman, “Afferent innervation patterns of the sacculus in pigeons,” J. Neurophysiol., 89, No. 1, 534–550 (2003).

    Article  PubMed  CAS  Google Scholar 

  86. J. M. Jørgensen, “On the structure of the macula lagenae in birds with some notes on the avian maculae utriculi and sacculi,” Vidensk. Meddr. dansk. naturh. Foren., 133, 121–147 (1970).

    Google Scholar 

  87. J. M. Jørgensen and T. Andersen, “On the structure of the avian maculae,” Acta Zool., 54, No. 1, 121–130 (1973).

    Article  Google Scholar 

  88. A. J. Ricci, K. J. Rennie, S. L. Cochran, et al., “Vestibular type I and type II hair cells: I. Morphological identification in pigeon and gerbil,” J. Vestib. Res., 7, No. 3, 393–406 (1997).

    Article  PubMed  CAS  Google Scholar 

  89. J. Schwarzkopf, “Structure and function of the ear of auditory brain area in birds,” in: Hearing Mechanisms in Vertebrates (CIBA Found. Symp.), Little Brown and Co., Boston (1967), pp. 41–58.

    Google Scholar 

  90. C. Köppl, A. Wegscheider, O. Gleich, and G. A. Manley, “A quantitative study of cochlear afferent axons in birds,” Hear. Res., 139, No. 2, 123–143 (2000).

    Article  PubMed  Google Scholar 

  91. G. A. Manley, C. Haeseler, and J. Brix, “Innervation patterns and spontaneous activity of afferent fibres to the lagenar macula and apical basilar papilla of the chick’s cochlea,” Hear. Res., 56, Nos. 1/2, 211–226 (1991).

    Article  PubMed  CAS  Google Scholar 

  92. A. J. Ricci, K. J. Rennie, and M. J. Correia, “The delayed rectifier, IKI, is the major conductance in type I vestibular hair cells across vestibular end organs,” Pflügers Arch., 432, No. 1, 34–42 (1996).

    Article  PubMed  CAS  Google Scholar 

  93. A. J. Ricci and M. J. Correia, “Electrical response properties of avian lagena type II hair cells: a model system for vestibular filtering,” Am. J. Physiol. (Regulat. Integrat. Comp. Physiol.), 276, 943–953 (1999).

    Google Scholar 

  94. J. E. Wold, “The vestibular nuclei in the domestic hen (Gallus domesticus): I. Normal anatomy,” Anat. Embryol., 149, No. 1, 29–46 (1976).

    Article  PubMed  CAS  Google Scholar 

  95. J. D. Dickman and Q. Fang, “Differential central projections of vestibular afferents in pigeons,” J. Comp. Neurol., 367, No. 1, 110–131 (1996).

    Article  PubMed  CAS  Google Scholar 

  96. R. L. Boord and G. L. Rasmussen, “Projection of the cochlear and lagenar nerves on the cochlear nucleus of the pigeon,” J. Comp. Neurol., 120, No. 3, 463–475 (1963).

    Article  PubMed  CAS  Google Scholar 

  97. R. L. Boord and H. J. Karten, “The distribution of primary lagenar fibers within the vestibular nuclear complex of the pigeon,” Brain, Behav., Evolut., 10, Nos. 1/3, 228–235 (1974).

    Article  CAS  Google Scholar 

  98. D. W. Schwarz and I. E. Schwarz, “Projection of afferents from individual vestibular sense organs to the vestibular nuclei in the pigeon,” Acta Otolaryngol., 102, Nos. 5/6, 463–473 (1986).

    Article  PubMed  CAS  Google Scholar 

  99. M. Burian, W. Gstoettner, and R. Zundritsch, “Saccular afferent fibers to the cochlear nucleus in the guinea pig,” Arch. Otorhinolaryngol., 246, No. 5, 238–241 (1989).

    Article  PubMed  CAS  Google Scholar 

  100. G. A. Kevetter and A. A. Perachio, “Projections from the sacculus to the cochlear nuclei in the Mongolian gerbil,” Brain, Behav., Evolut., 34, No. 4, 193–200 (1989).

    Article  CAS  Google Scholar 

  101. H. B. Zhao, K. Parham, S. Ghoshal, and D. O. Kim, “Small neurons in the vestibular nerve root project to the marginal shell of the anteroventral cochlear nucleus in the cat,” Brain Res., 700, Nos. 1/2, 295–298 (1995).

    Article  PubMed  CAS  Google Scholar 

  102. L. L. Bruce, J. Kingsley, D. H. Nichols, and B. Fritzsch, “The development of vestibulocochlear efferents and cochlear afferents in mice,” Int. J. Dev. Neurosci., 15, Nos. 4/5, 671–692 (1997).

    Article  PubMed  CAS  Google Scholar 

  103. J. Strutz, “The origin of efferent labyrinthine fibers: a comparative study in vertebrates,” Arch. Otorhinolaryngol., 234, No. 2, 139–143 (1982).

    Article  PubMed  CAS  Google Scholar 

  104. “Mammals,” in: Animals Life [in Russian], S. P. Naumova and A. P. Kuzyakina (eds.), Vol. 6, Prosveshcheniye, Moscow (1971).

  105. J. M. Jørgensen and N. A. Locket, “The inner ear of the echidna Tachyglossus aculeatus: the vestibular sensory organs,” Proc. Biol. Sci., 260, No. 1358, 183–189 (1995).

    Article  PubMed  Google Scholar 

  106. A. Ladhams and J. O. Pickles, “Morphology of the monotreme organ of Corti and macula lagena,” J. Comp. Neurol., 366, No. 2, 335–347 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Khorevin.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 40, No. 2, pp. 160–178, March–April, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khorevin, V.I. The lagena (the third otolith endorgan in vertebrates). Neurophysiology 40, 142–159 (2008). https://doi.org/10.1007/s11062-008-9021-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-008-9021-8

Keywords

Navigation