Skip to main content

Advertisement

Log in

The trigeminal pathways

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The role of the trigeminal system in facial and dural sensitivity has been recognized for a long time. More recently, the trigeminal system has also been considered a prominent actor in brain nociceptive innervation. It is the anatomical substrate of several frequent conditions, such as primary or secondary headaches, trigeminal neuralgia, and other orofacial pains. Appreciation of the delicate anatomical arrangement of the trigeminal pathway is one of the keys to understanding these conditions’ pathophysiology and to proposing innovative treatments. This review provides a structured presentation of existing knowledge about the trigeminal system, from classical anatomical data to the most recent literature. First, we present the organization of the trigeminal pathway from the trigeminal divisions, nerve, and nuclei to the thalamus and somatosensory cortex. We describe the neurons and fibers’ repartition at each level, depending on the location (somatotopic organization) and the type of receptors (modal organization). Such a dual somatotopic-modal arrangement of the trigeminal fibers is especially clear for the juxtapontine segment of the trigeminal nerve and the trigeminal nuclei of the brainstem. It has significant clinical consequences both for diagnosis and treatment. Second, we explore how the trigeminal system is modulated and involved in reflexes, for instance the trigemino-cardiac and the trigemino-autonomic reflexes, which could play an essential role in the autonomic symptoms observed in cluster headache. Finally, we present how to interact with this complex system to relieve pain mediated by the trigeminal system. This section covers both neuromodulatory and lesional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ray BS, Wolff HG (1940) Experimental studies on headache: pain-sensitive structures of the head and their significance in headache. Arch Surg 41(4):813–856. https://doi.org/10.1001/archsurg.1940.01210040002001

    Article  Google Scholar 

  2. Feindel W, Penfield W, McNAUGHTON F (1960) The tentorial nerves and localization of intracranial pain in man. Neurology 10:555–563

    Article  CAS  Google Scholar 

  3. Steiger HJ, Tew JM, Keller JT (1982) The sensory representation of the dura mater in the trigeminal ganglion of the cat. Neurosci Lett 31(3):231–236

    Article  CAS  Google Scholar 

  4. Mayberg MR, Zervas NT, Moskowitz MA (1984) Trigeminal projections to supratentorial pial and dural blood vessels in cats demonstrated by horseradish peroxidase histochemistry. J Comp Neurol 223(1):46–56. https://doi.org/10.1002/cne.902230105

    Article  CAS  PubMed  Google Scholar 

  5. Edvinsson L (2011) Tracing neural connections to pain pathways with relevance to primary headaches. Cephalalgia Int J Headache 31(6):737–747. https://doi.org/10.1177/0333102411398152

    Article  Google Scholar 

  6. Olesen J, Burstein R, Ashina M, Tfelt-Hansen P (2009) Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol 8(7):679–690. https://doi.org/10.1016/S1474-4422(09)70090-0

    Article  PubMed  Google Scholar 

  7. Terrier L-M, Hadjikhani N, Velut S et al (2021) The trigeminal system: the meningovascular complex—a review. J Anat. https://doi.org/10.1111/joa.13413

    Article  PubMed  Google Scholar 

  8. Joo W, Yoshioka F, Funaki T, Mizokami K, Rhoton AL (2014) Microsurgical anatomy of the trigeminal nerve. Clin Anat 27(1):61–88. https://doi.org/10.1002/ca.22330

    Article  PubMed  Google Scholar 

  9. Fontaine D, Almairac F, Santucci S et al (2018) Dural and pial pain-sensitive structures in humans: new inputs from awake craniotomies. Brain J Neurol 141(4):1040–1048. https://doi.org/10.1093/brain/awy005

    Article  Google Scholar 

  10. Arbab MA, Wiklund L, Svendgaard NA (1986) Origin and distribution of cerebral vascular innervation from superior cervical, trigeminal and spinal ganglia investigated with retrograde and anterograde WGA-HRP tracing in the rat. Neuroscience 19(3):695–708

    Article  CAS  Google Scholar 

  11. Liu-Chen LY, Han DH, Moskowitz MA (1983) Pia arachnoid contains substance P originating from trigeminal neurons. Neuroscience 9(4):803–808

    Article  CAS  Google Scholar 

  12. Goadsby PJ, Edvinsson L, Ekman R (1988) Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol 23(2):193–196. https://doi.org/10.1002/ana.410230214

    Article  CAS  PubMed  Google Scholar 

  13. Goadsby PJ, Knight YE, Hoskin KL, Butler P (1997) Stimulation of an intracranial trigeminally-innervated structure selectively increases cerebral blood flow. Brain Res 751(2):247–252

    Article  CAS  Google Scholar 

  14. Macfarlane R, Moskowitz MA (1995) The innervation of pial blood vessels and their role in cerebrovascular regulation. In: Caplan LR (ed) Brain ischemia. Springer, Berlin, pp 247–259

    Chapter  Google Scholar 

  15. Sakas DE, Moskowitz MA, Wei EP, Kontos HA, Kano M, Ogilvy CS (1989) Trigeminovascular fibers increase blood flow in cortical gray matter by axon reflex-like mechanisms during acute severe hypertension or seizures. Proc Natl Acad Sci USA 86(4):1401–1405

    Article  CAS  Google Scholar 

  16. Lambert GA, Bogduk N, Goadsby PJ, Duckworth JW, Lance JW (1984) Decreased carotid arterial resistance in cats in response to trigeminal stimulation. J Neurosurg 61(2):307–315. https://doi.org/10.3171/jns.1984.61.2.0307

    Article  CAS  PubMed  Google Scholar 

  17. Mai J, Paxinos G (2011) The human nervous system, 3rd edn. Accessed 23 Sept 2019. https://www.elsevier.com/books/the-human-nervous-system/mai/978-0-12-374236-0

  18. Penfield W, McNaughton F (1940) Dural headache and innervation of the dura mater. Arch Neurol Psychiatry 44(1):43–75. https://doi.org/10.1001/archneurpsyc.1940.02280070051003

    Article  Google Scholar 

  19. Lee S-H, Shin K-J, Koh K-S, Song W-C (2017) Visualization of the tentorial innervation of human dura mater. J Anat 231(5):683–689. https://doi.org/10.1111/joa.12659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Edvinsson L, McCulloch J, Uddman R (1981) Substance P: immunohistochemical localization and effect upon cat pial arteries in vitro and in situ. J Physiol 318:251–258

    Article  CAS  Google Scholar 

  21. Liu-Chen LY, Mayberg MR, Moskowitz MA (1983) Immunohistochemical evidence for a substance P-containing trigeminovascular pathway to pial arteries in cats. Brain Res 268(1):162–166

    Article  CAS  Google Scholar 

  22. Liu-Chen LY, Liszczak TM, King JC, Moskowitz MA (1986) Immunoelectron microscopic study of substance P-containing fibers in feline cerebral arteries. Brain Res 369(1–2):12–20

    Article  CAS  Google Scholar 

  23. Lee S-H, Hwang S-J, Koh K-S, Song W-C, Han S-D (2017) Macroscopic innervation of the dura mater covering the middle cranial fossa in humans correlated to neurovascular headache. Front Neuroanat 11:127. https://doi.org/10.3389/fnana.2017.00127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kemp WJ, Tubbs RS, Cohen-Gadol AA (2012) The innervation of the cranial dura mater: neurosurgical case correlates and a review of the literature. World Neurosurg 78(5):505–510. https://doi.org/10.1016/j.wneu.2011.10.045

    Article  PubMed  Google Scholar 

  25. Liu GT (2005) Walsh and Hoyt’s clinical neuro-ophthalmology, vol 1, 6th edn. Lippincott Williams and Wilkins. https://collections.lib.utah.edu/ark:/87278/s6rj4hsw

  26. Burstein R, Blake P, Schain A, Perry C (2017) Extracranial origin of headache. Curr Opin Neurol 30(3):263–271. https://doi.org/10.1097/WCO.0000000000000437

    Article  PubMed  PubMed Central  Google Scholar 

  27. Noseda R, Burstein R (2013) Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, cortical spreading depression, sensitization, and modulation of pain. Pain 154(Suppl 1):S44–S53. https://doi.org/10.1016/j.pain.2013.07.021

    Article  CAS  PubMed  Google Scholar 

  28. Ramachandran R (2018) Neurogenic inflammation and its role in migraine. Semin Immunopathol 40(3):301–314. https://doi.org/10.1007/s00281-018-0676-y

    Article  CAS  PubMed  Google Scholar 

  29. Donaldson IM (2000) The functions of the proprioceptors of the eye muscles. Philos Trans R Soc Lond B Biol Sci 355(1404):1685–1754. https://doi.org/10.1098/rstb.2000.0732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Augustine JR (2017) Human neuroanatomy. Wiley, New York

    Google Scholar 

  31. Borsook D, DaSilva AFM, Ploghaus A, Becerra L (2003) Specific and somatotopic functional magnetic resonance imaging activation in the trigeminal ganglion by brush and noxious heat. J Neurosci Off J Soc Neurosci 23(21):7897–7903

    Article  CAS  Google Scholar 

  32. Peker S, Kurtkaya O, Uzün I, Pamir MN (2006) Microanatomy of the central myelin-peripheral myelin transition zone of the trigeminal nerve. Neurosurgery 59(2):354–359. https://doi.org/10.1227/01.NEU.0000223501.27220.69 (discussion 354–359)

    Article  PubMed  Google Scholar 

  33. Young R (1977) “Pain in the Trigeminal Region”, fiber spectrum of the trigeminal sensory root of frog by cat and man determined electron microscopy. Elsevier/North-Holland Biomedical Press, New York

    Google Scholar 

  34. Emmons WF, Rhoton AL (1968) Functional subdivision of the trigeminal sensory root. Surg Forum 19:440–441

    CAS  PubMed  Google Scholar 

  35. Emmons WF, Rhoton AL (1971) Subdivision of the trigeminal sensory root. Experimental study in the monkey. J Neurosurg 35(5):585–591. https://doi.org/10.3171/jns.1971.35.5.0585

    Article  CAS  PubMed  Google Scholar 

  36. Gudmundsson K, Rhoton AL, Rushton JG (1971) Detailed anatomy of the intracranial portion of the trigeminal nerve. J Neurosurg 35(5):592–600. https://doi.org/10.3171/jns.1971.35.5.0592

    Article  CAS  PubMed  Google Scholar 

  37. Jannetta PJ (1967) Gross (mesoscopic) description of the human trigeminal nerve and ganglion. J Neurosurg 26(suppl 1):109–111. https://doi.org/10.3171/jns.1967.26.1part2.0109

    Article  Google Scholar 

  38. Terrier L-M, Amelot A, François P, Destrieux C, Zemmoura I, Velut S (2018) Therapeutic failure in trigeminal neuralgia: from a clarification of trigeminal nerve somatotopy to a targeted partial sensory rhizotomy. World Neurosurg 117:e138–e145. https://doi.org/10.1016/j.wneu.2018.05.211

    Article  PubMed  Google Scholar 

  39. Alper J, Shrivastava RK, Balchandani P (2017) Is there a magnetic resonance imaging-discernible cause for trigeminal neuralgia? a structured review. World Neurosurg 98:89–97. https://doi.org/10.1016/j.wneu.2016.10.104

    Article  PubMed  Google Scholar 

  40. Pelletier VA, Poulos DA, Lende RA (1974) Functional localization in the trigeminal root. J Neurosurg 40(4):504–513. https://doi.org/10.3171/jns.1974.40.4.0504

    Article  CAS  PubMed  Google Scholar 

  41. Olszewski J (1950) On the anatomical and functional organization of the spinal trigeminal nucleus. J Comp Neurol 92(3):401–413

    Article  CAS  Google Scholar 

  42. Taber E (1961) The cytoarchitecture of the brain stem of the cat. I. Brain stem nuclei of cat. J Comp Neurol 116:27–69

    Article  CAS  Google Scholar 

  43. Aström KE (1953) On the central course of afferent fibres in the trigeminal, facial, glossopharyngeal, and vagal nerves and their nuclei in the mouse. Acta Physiol Scand 29(S106):209–320. https://doi.org/10.1111/apha.1953.29.s106.209

    Article  Google Scholar 

  44. Arbab MA-R, Delgado T, Wiklund L, Svendgaard NAA (1988) Brain stem terminations of the trigeminal and upper spinal ganglia innervation of the cerebrovascular system: WGA-HRP transganglionic study. J Cereb Blood Flow Metab 8(1):54–63. https://doi.org/10.1038/jcbfm.1988.8

    Article  CAS  PubMed  Google Scholar 

  45. Eisenman J, Landgren S, Novin D (1963) Functional organization in the main sensory trigeminal nucleus and in the rostral subdivision of the nucleus of the spinal trigeminal tract in the cat. Acta Physiol Scand Suppl 214:1–44

    Google Scholar 

  46. Capra NF, Dessem D (1992) Central connections of trigeminal primary afferent neurons: topographical and functional considerations. Crit Rev Oral Biol Med 4(1):1–52. https://doi.org/10.1177/10454411920040010101

    Article  CAS  PubMed  Google Scholar 

  47. Henssen DJHA, Mollink J, Kurt E et al (2018) Ex vivo visualization of the trigeminal pathways in the human brainstem using 11.7 T diffusion MRI combined with microscopy polarized light imaging. Brain Struct Funct. https://doi.org/10.1007/s00429-018-1767-1

    Article  PubMed  PubMed Central  Google Scholar 

  48. Henssen DJHA, Kurt E, Kozicz T, van Dongen R, Bartels RHMA, van Cappellen van Walsum AM (2016) New insights in trigeminal anatomy: a double orofacial tract for nociceptive input. Front Neuroanat 10:53. https://doi.org/10.3389/fnana.2016.00053

    Article  PubMed  PubMed Central  Google Scholar 

  49. Afshar F, Dykes E (1984) Computer-generated three-dimensional visualization of the trigeminal nuclear complex. Surg Neurol 22(2):189–196

    Article  CAS  Google Scholar 

  50. Peker S, Sirin A (2017) Primary trigeminal neuralgia and the role of pars oralis of the spinal trigeminal nucleus. Med Hypotheses 100:15–18. https://doi.org/10.1016/j.mehy.2017.01.008

    Article  PubMed  Google Scholar 

  51. Crosby EC (1962) Correlative anatomy of the nervous system. Macmillan, New York. Accessed 28 Aug 2019. http://archive.org/details/correlativeanato00cros

  52. Graham SH, Sharp FR, Dillon W (1988) Intraoral sensation in patients with brainstem lesions: role of the rostral spinal trigeminal nuclei in pons. Neurology 38(10):1529–1533. https://doi.org/10.1212/wnl.38.10.1529

    Article  CAS  PubMed  Google Scholar 

  53. Jacquin MF, Semba K, Rhoades RW, Egger MD (1982) Trigeminal primary afferents project bilaterally to dorsal horn and ipsilaterally to cerebellum, reticular formation, and cuneate, solitary, supratrigeminal and vagal nuclei. Brain Res 246(2):285–291

    Article  CAS  Google Scholar 

  54. Hayashi H, Sumino R, Sessle BJ (1984) Functional organization of trigeminal subnucleus interpolaris: nociceptive and innocuous afferent inputs, projections to thalamus, cerebellum, and spinal cord, and descending modulation from periaqueductal gray. J Neurophysiol 51(5):890–905. https://doi.org/10.1152/jn.1984.51.5.890

    Article  CAS  PubMed  Google Scholar 

  55. Ohya A, Tsuruoka M, Imai E et al (1993) Thalamic- and cerebellar-projecting interpolaris neuron responses to afferent inputs. Brain Res Bull 32(6):615–621

    Article  CAS  Google Scholar 

  56. Bartsch T, Goadsby PJ (2002) Stimulation of the greater occipital nerve induces increased central excitability of dural afferent input. Brain J Neurol 125(Pt 7):1496–1509. https://doi.org/10.1093/brain/awf166

    Article  Google Scholar 

  57. Darian-Smith I, Phillips G, Ryan RD (1963) Functional organization in the trigeminal main sensory and rostral spinal nuclei of the cat. J Physiol 168:129–146. https://doi.org/10.1113/jphysiol.1963.sp007182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Déjerine J (1914) Sémiologie Des Affections Du Système Nerveux. Masson. Librairies de l’Académie de médecine

  59. Das A, Shinde PD, Kesavadas C, Nair M (2011) Teaching neuroimages: onion-skin pattern facial sensory loss. Neurology 77(8):e45-46. https://doi.org/10.1212/WNL.0b013e31822affc6

    Article  PubMed  Google Scholar 

  60. Freeman L, Wu OC, Sweet J, Cohen M, Smith GA, Miller JP (2019) Facial sensory restoration after trigeminal sensory rhizotomy by collateral sprouting from the occipital nerves. Neurosurgery. https://doi.org/10.1093/neuros/nyz306

    Article  PubMed Central  Google Scholar 

  61. Ko MW, Prasad S (2019) Headache, facial pain, and disorders of facial sensation. In: Liu GT, Volpe NJ, Galetta SL (eds) Liu, Volpe, and Galetta’s neuro-ophthalmology, 3rd edn. Elsevier, New York, pp 661–684. https://doi.org/10.1016/B978-0-323-34044-1.00019-5

    Chapter  Google Scholar 

  62. Davis KD, Dostrovsky JO (1988) Responses of feline trigeminal spinal tract nucleus neurons to stimulation of the middle meningeal artery and sagittal sinus. J Neurophysiol 59(2):648–666. https://doi.org/10.1152/jn.1988.59.2.648

    Article  CAS  PubMed  Google Scholar 

  63. Marfurt CF, Del Toro DR (1987) Corneal sensory pathway in the rat: a horseradish peroxidase tracing study. J Comp Neurol 261(3):450–459. https://doi.org/10.1002/cne.902610309

    Article  CAS  PubMed  Google Scholar 

  64. Pozo MA, Cervero F (1993) Neurons in the rat spinal trigeminal complex driven by corneal nociceptors: receptive-field properties and effects of noxious stimulation of the cornea. J Neurophysiol 70(6):2370–2378. https://doi.org/10.1152/jn.1993.70.6.2370

    Article  CAS  PubMed  Google Scholar 

  65. Marfurt CF, Echtenkamp SF (1988) Central projections and trigeminal ganglion location of corneal afferent neurons in the monkey. Macaca fascicularis J Comp Neurol 272(3):370–382. https://doi.org/10.1002/cne.902720307

    Article  CAS  PubMed  Google Scholar 

  66. Arbab MA, Delgado T, Wiklund L, Svendgaard NA (1988) Brain stem terminations of the trigeminal and upper spinal ganglia innervation of the cerebrovascular system: WGA-HRP transganglionic study. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 8(1):54–63. https://doi.org/10.1038/jcbfm.1988.8

    Article  CAS  Google Scholar 

  67. Piovesan EJ, Kowacs PA, Tatsui CE, Lange MC, Ribas LC, Werneck LC (2001) Referred pain after painful stimulation of the greater occipital nerve in humans: evidence of convergence of cervical afferences on trigeminal nuclei. Cephalalgia Int J Headache 21(2):107–109. https://doi.org/10.1046/j.1468-2982.2001.00166.x

    Article  CAS  Google Scholar 

  68. Angus-Leppan H, Lambert GA, Boers P, Zagami AS, Olausson B (1992) Craniovascular nociceptive pathways relay in the upper cervical spinal cord in the cat. Neurosci Lett 137(2):203–206. https://doi.org/10.1016/0304-3940(92)90404-u

    Article  CAS  PubMed  Google Scholar 

  69. Goadsby PJ, Charbit AR, Andreou AP, Akerman S, Holland PR (2009) Neurobiology of migraine. Neuroscience 161(2):327–341. https://doi.org/10.1016/j.neuroscience.2009.03.019

    Article  CAS  PubMed  Google Scholar 

  70. Rausell E, Jones EG (1991) Chemically distinct compartments of the thalamic VPM nucleus in monkeys relay principal and spinal trigeminal pathways to different layers of the somatosensory cortex. J Neurosci Off J Soc Neurosci 11(1):226–237

    Article  CAS  Google Scholar 

  71. Wallenberg A (1905) Sekundäre Bahnen aus den frontalen sensiblen Trigeminuskerne des Kaninchens. Anat Anz:145–155.

  72. Woodburne RT (1936) A phylogenetic consideration of the primary and secondary centers and connections of the trigeminal complex in a series of vertebrates. J Comp Neurol 65(1):403–501. https://doi.org/10.1002/cne.900650113

    Article  Google Scholar 

  73. Fleming GWTH (1937) The dorsal trigeminal tract and the centre median nucleus of luys. J Nerv Ment Disord 85:505 (Papez JW, Rundles W (1938) J Ment Sci 84(349):415–415. https://doi.org/10.1192/bjp.84.349.415-b)

  74. Walker AE (1939) The origin, course and terminations of the secondary pathways of the trigeminal nerve in primates. J Comp Neurol 71(1):59–89. https://doi.org/10.1002/cne.900710105

    Article  Google Scholar 

  75. Carpenter MB (1957) The dorsal trigeminal tract in the rhesus monkey. J Anat 91(Pt 1):82-90.3

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Torvik A (1957) The ascending fibers from the main trigeminal sensory nucleus. An experimental study in the cat. Am J Anat 100(1):1–15. https://doi.org/10.1002/aja.1001000102

    Article  CAS  PubMed  Google Scholar 

  77. Smith JB, Watson GDR, Alloway KD, Schwarz C, Chakrabarti S (2015) Corticofugal projection patterns of whisker sensorimotor cortex to the sensory trigeminal nuclei. Front Neural Circuits 9:53. https://doi.org/10.3389/fncir.2015.00053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Matsushita M, Ikeda M, Okado N (1982) The cells of origin of the trigeminothalamic, trigeminospinal and trigeminocerebellar projections in the cat. Neuroscience 7(6):1439–1454

    Article  CAS  Google Scholar 

  79. Juergen K (2004) The Human Nervous System (Hardback) par George Paxinos, 2edn. New Hardback, Mai

    Google Scholar 

  80. Brodal P (2016) The central nervous system, 5th edn. Oxford University Press, p 640

  81. Welker WI (1973) Principles of organization of the ventrobasal complex in mammals. Brain Behav Evol 7(4):253–336. https://doi.org/10.1159/000124417

    Article  CAS  PubMed  Google Scholar 

  82. Kaas JH, Nelson RJ, Sur M, Dykes RW, Merzenich MM (1984) The somatotopic organization of the ventroposterior thalamus of the squirrel monkey, Saimiri sciureus. J Comp Neurol 226(1):111–140. https://doi.org/10.1002/cne.902260109

    Article  CAS  PubMed  Google Scholar 

  83. Lenz FA, Seike M, Lin YC et al (1993) Neurons in the area of human thalamic nucleus ventralis caudalis respond to painful heat stimuli. Brain Res 623(2):235–240. https://doi.org/10.1016/0006-8993(93)91433-s

    Article  CAS  PubMed  Google Scholar 

  84. Malick A, Strassman RM, Burstein R (2000) Trigeminohypothalamic and reticulohypothalamic tract neurons in the upper cervical spinal cord and caudal medulla of the rat. J Neurophysiol 84(4):2078–2112. https://doi.org/10.1152/jn.2000.84.4.2078

    Article  CAS  PubMed  Google Scholar 

  85. Edvinsson JCA, Viganò A, Alekseeva A et al (2020) The fifth cranial nerve in headaches. J Headache Pain 21(1):65. https://doi.org/10.1186/s10194-020-01134-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Patel NM, M Das J (2021) Neuroanatomy, spinal trigeminal nucleus. In: StatPearls. StatPearls Publishing. Accessed 17 Jul 2021. http://www.ncbi.nlm.nih.gov/books/NBK539729/

  87. Craig AD, Dostrovsky JO (1997) Anaesthesia: biologic foundations. In: Yaksh TL (ed) Processing of nociceptive information at supraspinal levels. Lippincott-Raven, Philadelphia, pp 625–642

    Google Scholar 

  88. Noseda R, Burstein R (2011) Advances in understanding the mechanisms of migraine-type photophobia. Curr Opin Neurol 24(3):197–202. https://doi.org/10.1097/WCO.0b013e3283466c8e

    Article  PubMed  PubMed Central  Google Scholar 

  89. Noseda R, Jakubowski M, Kainz V, Borsook D, Burstein R (2011) Cortical projections of functionally identified thalamic trigeminovascular neurons: implications for migraine headache and its associated symptoms. J Neurosci Off J Soc Neurosci 31(40):14204–14217. https://doi.org/10.1523/JNEUROSCI.3285-11.2011

    Article  CAS  Google Scholar 

  90. Noseda R, Kainz V, Jakubowski M et al (2010) A neural mechanism for exacerbation of headache by light. Nat Neurosci 13(2):239–245. https://doi.org/10.1038/nn.2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jantsch HHF, Kemppainen P, Ringler R, Handwerker HO, Forster C (2005) Cortical representation of experimental tooth pain in humans. Pain 118(3):390–399. https://doi.org/10.1016/j.pain.2005.09.017

    Article  CAS  PubMed  Google Scholar 

  92. Nash PG, Macefield VG, Klineberg IJ, Gustin SM, Murray GM, Henderson LA (2010) Bilateral activation of the trigeminothalamic tract by acute orofacial cutaneous and muscle pain in humans. Pain 151(2):384–393. https://doi.org/10.1016/j.pain.2010.07.027

    Article  CAS  PubMed  Google Scholar 

  93. Nash PG, Macefield VG, Klineberg IJ, Murray GM, Henderson LA (2009) Differential activation of the human trigeminal nuclear complex by noxious and non-noxious orofacial stimulation. Hum Brain Mapp 30(11):3772–3782. https://doi.org/10.1002/hbm.20805

    Article  PubMed  PubMed Central  Google Scholar 

  94. Servos P, Engel SA, Gati J, Menon R (1999) fMRI evidence for an inverted face representation in human somatosensory cortex. NeuroReport 10(7):1393–1395

    Article  CAS  Google Scholar 

  95. Nguyen BT, Tran TD, Hoshiyama M, Inui K, Kakigi R (2004) Face representation in the human primary somatosensory cortex. Neurosci Res 50(2):227–232. https://doi.org/10.1016/j.neures.2004.07.004

    Article  PubMed  Google Scholar 

  96. Moulton EA, Pendse G, Morris S, Aiello-Lammens M, Becerra L, Borsook D (2009) Segmentally arranged somatotopy within the face representation of human primary somatosensory cortex. Hum Brain Mapp 30(3):757–765. https://doi.org/10.1002/hbm.20541

    Article  PubMed  Google Scholar 

  97. Ramachandran VS, Hirstein W (1998) The perception of phantom limbs. The DO Hebb lecture. Brain J Neurol 121(Pt 9):1603–1630. https://doi.org/10.1093/brain/121.9.1603

    Article  Google Scholar 

  98. Ramachandran VS, Brang D, McGeoch PD (2010) Dynamic reorganization of referred sensations by movements of phantom limbs. NeuroReport 21(10):727–730. https://doi.org/10.1097/WNR.0b013e32833be9ab

    Article  PubMed  Google Scholar 

  99. Uysal H, Özkan Ö, Barçın E, Şenol U, Tombak K, Özkan Ö (2016) Referred facial sensation on the hand after full face transplantation. Neurology 86(9):836–839. https://doi.org/10.1212/WNL.0000000000002409

    Article  PubMed  Google Scholar 

  100. Disbrow E, Roberts T, Krubitzer L (2000) Somatotopic organization of cortical fields in the lateral sulcus of Homo sapiens: evidence for SII and PV. J Comp Neurol 418(1):1–21. https://doi.org/10.1002/(sici)1096-9861(20000228)418:1%3c1::aid-cne1%3e3.0.co;2-p

    Article  CAS  PubMed  Google Scholar 

  101. Eickhoff SB, Schleicher A, Zilles K, Amunts K (2006) The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cereb Cortex 16(2):254–267. https://doi.org/10.1093/cercor/bhi105

    Article  PubMed  Google Scholar 

  102. Sanchez Panchuelo RM, Besle J, Schluppeck D, Humberstone M, Francis S (2018) Somatotopy in the human somatosensory system. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2018.00235

    Article  PubMed  PubMed Central  Google Scholar 

  103. Schulte LH, Sprenger C, May A (2016) Physiological brainstem mechanisms of trigeminal nociception: an fMRI study at 3T. Neuroimage 124(Pt A):518–525. https://doi.org/10.1016/j.neuroimage.2015.09.023

    Article  PubMed  Google Scholar 

  104. Mehnert J, Schulte L, Timmann D, May A (2017) Activity and connectivity of the cerebellum in trigeminal nociception. Neuroimage 150:112–118. https://doi.org/10.1016/j.neuroimage.2017.02.023

    Article  PubMed  Google Scholar 

  105. Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex J Devoted Study Nerv Syst Behav 46(7):831–844. https://doi.org/10.1016/j.cortex.2009.11.008

    Article  Google Scholar 

  106. Stoodley CJ, Valera EM, Schmahmann JD (2012) Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage 59(2):1560–1570. https://doi.org/10.1016/j.neuroimage.2011.08.065

    Article  PubMed  Google Scholar 

  107. Strata P, Scelfo B, Sacchetti B (2011) Involvement of cerebellum in emotional behavior. Physiol Res 60(Suppl 1):S39-48

    Article  CAS  Google Scholar 

  108. Silverman JD, Kruger L (1985) Projections of the rat trigeminal sensory nuclear complex demonstrated by multiple fluorescent dye retrograde transport. Brain Res 361(1–2):383–388

    Article  CAS  Google Scholar 

  109. Steindler DA (1985) Trigeminocerebellar, trigeminotectal, and trigeminothalamic projections: a double retrograde axonal tracing study in the mouse. J Comp Neurol 237(2):155–175. https://doi.org/10.1002/cne.902370203

    Article  CAS  PubMed  Google Scholar 

  110. Gobel S, Purvis MB (1972) Anatomical studies of the organization of the spinal V nucleus: the deep bundles and the spinal V tract. Brain Res 48:27–44. https://doi.org/10.1016/0006-8993(72)90169-2

    Article  CAS  PubMed  Google Scholar 

  111. Contreras RJ, Beckstead RM, Norgren R (1982) The central projections of the trigeminal, facial, glossopharyngeal and vagus nerves: an autoradiographic study in the rat. J Auton Nerv Syst 6(3):303–322. https://doi.org/10.1016/0165-1838(82)90003-0

    Article  CAS  PubMed  Google Scholar 

  112. Rustioni A, Baan JW, Verdonk-Karlsen S (1972) Afferents from the facial, vago-glossopharyngeal and second cervical nerves to the substantia gelatinosa of the rat. Brain Res 37(1):137–140. https://doi.org/10.1016/0006-8993(72)90355-1

    Article  CAS  PubMed  Google Scholar 

  113. Henssen DJHA, Derks B, van Doorn M et al (2019) Vagus nerve stimulation for primary headache disorders: an anatomical review to explain a clinical phenomenon. Cephalalgia 39(9):1180–1194. https://doi.org/10.1177/0333102419833076

    Article  PubMed  PubMed Central  Google Scholar 

  114. Nomura S, Mizuno N (1984) Central distribution of primary afferent fibers in the Arnold’s nerve (the auricular branch of the vagus nerve): a transganglionic HRP study in the cat. Brain Res 292(2):199–205. https://doi.org/10.1016/0006-8993(84)90756-x

    Article  CAS  PubMed  Google Scholar 

  115. Ganchrow D (1978) Intratrigeminal and thalamic projections of nucleus caudalis in the squirrel monkey (Saimiri sciureus): a degeneration and autoradiographic study. J Comp Neurol 178(2):281–312. https://doi.org/10.1002/cne.901780206

    Article  CAS  PubMed  Google Scholar 

  116. McGee S (2012) Chapter 61—Examination of the reflexes. In: McGee S (ed) Evidence-based physical diagnosis (3rd ed). W.B. Saunders, Philadelphia, pp 581–592. doi:https://doi.org/10.1016/B978-1-4377-2207-9.00061-6

  117. Schaller B, Probst R, Strebel S, Gratzl O (1999) Trigeminocardiac reflex during surgery in the cerebellopontine angle. J Neurosurg 90(2):215–220. https://doi.org/10.3171/jns.1999.90.2.0215

    Article  CAS  PubMed  Google Scholar 

  118. Meuwly C, Chowdhury T, Sandu N et al (2017) Definition and diagnosis of the trigeminocardiac reflex: a grounded theory approach for an update. Front Neurol 8:533. https://doi.org/10.3389/fneur.2017.00533

    Article  PubMed  PubMed Central  Google Scholar 

  119. Chowdhury T, Mendelowith D, Golanov E et al (2015) Trigeminocardiac reflex: the current clinical and physiological knowledge. J Neurosurg Anesthesiol 27(2):136–147. https://doi.org/10.1097/ANA.0000000000000065

    Article  PubMed  Google Scholar 

  120. Leon-Ariza DS, Leon-Ariza JS, Nangiana J, Vargas Grau G, Leon-Sarmiento FE, Quiñones-Hinojosa A (2018) Evidences in neurological surgery and a cutting edge classification of the trigeminocardiac reflex: a systematic review. World Neurosurg 117:4–10. https://doi.org/10.1016/j.wneu.2018.05.208

    Article  PubMed  Google Scholar 

  121. Kumada M, Dampney RA, Reis DJ (1977) The trigeminal depressor response: a novel vasodepressor response originating from the trigeminal system. Brain Res 119(2):305–326

    Article  CAS  Google Scholar 

  122. Sugrue A, DeSimone CV, Gaba P, El-Harasis MA, Deshmukh AJ, Asviravtham SJ (2018) Grinding to a halt: stimulation of the trigeminal cardiac reflex from severe bruxism. Hear Case Rep 4(8):329–331. https://doi.org/10.1016/j.hrcr.2017.06.013

    Article  Google Scholar 

  123. Lapi D, Scuri R, Colantuoni A (2016) Trigeminal cardiac reflex and cerebral blood flow regulation. Front Neurosci 10:470. https://doi.org/10.3389/fnins.2016.00470

    Article  PubMed  PubMed Central  Google Scholar 

  124. May A, Bahra A, Büchel C, Frackowiak RS, Goadsby PJ (1998) Hypothalamic activation in cluster headache attacks. Lancet Lond Engl 352(9124):275–278. https://doi.org/10.1016/S0140-6736(98)02470-2

    Article  CAS  Google Scholar 

  125. May A (2005) Cluster headache: pathogenesis, diagnosis, and management. Lancet Lond Engl 366(9488):843–855. https://doi.org/10.1016/S0140-6736(05)67217-0

    Article  Google Scholar 

  126. Leone M, Bussone G (2009) Pathophysiology of trigeminal autonomic cephalalgias. Lancet Neurol 8(8):755–764. https://doi.org/10.1016/S1474-4422(09)70133-4

    Article  PubMed  Google Scholar 

  127. Jannetta PJ (1967) Arterial compression of the trigeminal nerve at the pons in patients with trigeminal neuralgia. J Neurosurg 26(Suppl 1):159–162. https://doi.org/10.3171/jns.1967.26.1part2.0159

    Article  Google Scholar 

  128. Headache Classification Committee of the International Headache Society (IHS) (2018) The international classification of headache disorders, 3rd edn. Cephalalgia Int J Headache 38(1):1–211. doi:https://doi.org/10.1177/0333102417738202

  129. Cruccu G, Finnerup NB, Jensen TS et al (2016) Trigeminal neuralgia: new classification and diagnostic grading for practice and research. Neurology 87(2):220–228. https://doi.org/10.1212/WNL.0000000000002840

    Article  PubMed  PubMed Central  Google Scholar 

  130. Cruccu G, Di Stefano G, Truini A (2020) Trigeminal neuralgia. N Engl J Med 383(8):754–762. https://doi.org/10.1056/NEJMra1914484

    Article  PubMed  Google Scholar 

  131. Liu J, Wu G, Xiang H et al (2020) Long-term retrospective analysis of microvascular decompression in patients with recurrent trigeminal neuralgia. Front Neurol. https://doi.org/10.3389/fneur.2020.584224

    Article  PubMed  PubMed Central  Google Scholar 

  132. Barker FG, Jannetta PJ, Bissonette DJ, Larkins MV, Jho HD (1996) The long-term outcome of microvascular decompression for trigeminal neuralgia. N Engl J Med 334(17):1077–1083. https://doi.org/10.1056/NEJM199604253341701

    Article  PubMed  Google Scholar 

  133. Jannetta PJ (1980) Neurovascular compression in cranial nerve and systemic disease. Ann Surg 192(4):518–525

    Article  CAS  Google Scholar 

  134. Lopez BC, Hamlyn PJ, Zakrzewska JM (2004) Systematic review of ablative neurosurgical techniques for the treatment of trigeminal neuralgia. Neurosurgery 54(4):973–982 (discussion 982–983)

    Article  Google Scholar 

  135. Lopez BC, Hamlyn PJ, Zakrzewska JM (2004) Stereotactic radiosurgery for primary trigeminal neuralgia: state of the evidence and recommendations for future reports. J Neurol Neurosurg Psychiatry 75(7):1019–1024

    Article  CAS  Google Scholar 

  136. Cheng JS, Lim DA, Chang EF, Barbaro NM (2014) A review of percutaneous treatments for trigeminal neuralgia. Neurosurgery 10(Suppl 1):25–33. https://doi.org/10.1227/NEU.00000000000001687 (discussion 33)

    Article  PubMed  Google Scholar 

  137. Broggi G, Ferroli P, Franzini A, Servello D, Dones I (2000) Microvascular decompression for trigeminal neuralgia: comments on a series of 250 cases, including 10 patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 68(1):59–64

    Article  CAS  Google Scholar 

  138. Keravel Y, Gaston A, Ciampi de Andrade D, Mencattini G, Le Guérinel C (2009) Traitement de la névralgie trigéminale par la compression par ballon. Neurochirurgie 55(2):197–202. https://doi.org/10.1016/j.neuchi.2009.01.008

    Article  CAS  PubMed  Google Scholar 

  139. Wang C, Dou Z, Yan M et al (2021) The comparison of efficacy and complications of coblation and radiofrequency thermocoagulation for V2/V3 idiopathic trigeminal neuralgia: a retrospective cohort study of 292 cases. BMC Anesthesiol 21:6. https://doi.org/10.1186/s12871-020-01224-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Udupi BP, Chouhan RS, Dash HH, Bithal PK, Prabhakar H (2012) Comparative evaluation of percutaneous retrogasserian glycerol rhizolysis and radiofrequency thermocoagulation techniques in the management of trigeminal neuralgia. Neurosurgery 70(2):407–412. https://doi.org/10.1227/NEU.0b013e318233a85f (discussion 412–413)

    Article  PubMed  Google Scholar 

  141. Holste K, Chan AY, Rolston JD, Englot DJ (2020) Pain outcomes following microvascular decompression for drug-resistant trigeminal neuralgia: a systematic review and meta-analysis. Neurosurgery 86(2):182–190. https://doi.org/10.1093/neuros/nyz075

    Article  PubMed  Google Scholar 

  142. Jones MR, Urits I, Ehrhardt KP et al (2019) A comprehensive review of trigeminal neuralgia. Curr Pain Headache Rep 23(10):74. https://doi.org/10.1007/s11916-019-0810-0

    Article  PubMed  Google Scholar 

  143. Dandy WE (1929) An operation for the cure of tic douloureux: partial section of the sensory root at the pons. Arch Surg 18(2):687–734. https://doi.org/10.1001/archsurg.1929.04420030081005

    Article  Google Scholar 

  144. Fontaine D, Vandersteen C, Magis D, Lanteri-Minet M (2015) Neuromodulation in cluster headache. Adv Tech Stand Neurosurg 42:3–21. https://doi.org/10.1007/978-3-319-09066-5_1

    Article  PubMed  Google Scholar 

  145. Hoffmann J, May A (2019) Neuromodulation for the treatment of primary headache syndromes. Expert Rev Neurother 19(3):261–268. https://doi.org/10.1080/14737175.2019.1585243

    Article  CAS  PubMed  Google Scholar 

  146. Hoffmann J, May A (2018) Diagnosis, pathophysiology, and management of cluster headache. Lancet Neurol 17(1):75–83. https://doi.org/10.1016/S1474-4422(17)30405-2

    Article  PubMed  Google Scholar 

  147. Rozen TD, Fishman RS (2012) Cluster headache in the United States of America: demographics, clinical characteristics, triggers, suicidality, and personal burden. Headache 52(1):99–113. https://doi.org/10.1111/j.1526-4610.2011.02028.x

    Article  PubMed  Google Scholar 

  148. Miller S, Matharu M (2017) Non-invasive neuromodulation in primary headaches. Curr Pain Headache Rep 21(3):14. https://doi.org/10.1007/s11916-017-0608-x

    Article  PubMed  Google Scholar 

  149. Antony AB, Mazzola AJ, Dhaliwal GS, Hunter CW (2019) Neurostimulation for the treatment of chronic head and facial pain: a literature review. Pain Physician 22(5):447–477

    Article  Google Scholar 

  150. Weiner RL, Reed KL (1999) Peripheral neurostimulation for control of intractable occipital neuralgia. Neuromodulation J Int Neuromodulation Soc 2(3):217–221. https://doi.org/10.1046/j.1525-1403.1999.00217.x

    Article  CAS  Google Scholar 

  151. Magis D, Bruno M-A, Fumal A et al (2011) Central modulation in cluster headache patients treated with occipital nerve stimulation: an FDG-PET study. BMC Neurol 11:25. https://doi.org/10.1186/1471-2377-11-25

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ansarinia M, Rezai A, Tepper SJ et al (2010) Electrical stimulation of sphenopalatine ganglion for acute treatment of cluster headaches. Headache 50(7):1164–1174. https://doi.org/10.1111/j.1526-4610.2010.01661.x

    Article  PubMed  Google Scholar 

  153. Goadsby PJ, Sahai-Srivastava S, Kezirian EJ et al (2019) Safety and efficacy of sphenopalatine ganglion stimulation for chronic cluster headache: a double-blind, randomised controlled trial. Lancet Neurol 18(12):1081–1090. https://doi.org/10.1016/S1474-4422(19)30322-9

    Article  PubMed  Google Scholar 

  154. Schoenen J, Jensen RH, Lantéri-Minet M et al (2013) Stimulation of the sphenopalatine ganglion (SPG) for cluster headache treatment. Pathway CH-1: a randomized, sham-controlled study. Cephalalgia Int J Headache 33(10):816–830. https://doi.org/10.1177/0333102412473667

    Article  Google Scholar 

  155. Jürgens TP, Barloese M, May A et al (2017) Long-term effectiveness of sphenopalatine ganglion stimulation for cluster headache. Cephalalgia 37(5):423–434. https://doi.org/10.1177/0333102416649092

    Article  PubMed  Google Scholar 

  156. Leone M, Franzini A, Bussone G (2001) Stereotactic stimulation of posterior hypothalamic gray matter in a patient with intractable cluster headache. N Engl J Med 345(19):1428–1429. https://doi.org/10.1056/NEJM200111083451915

    Article  CAS  PubMed  Google Scholar 

  157. Fontaine D, Lanteri-Minet M, Ouchchane L et al (2010) Anatomical location of effective deep brain stimulation electrodes in chronic cluster headache. Brain J Neurol 133(Pt 4):1214–1223. https://doi.org/10.1093/brain/awq041

    Article  Google Scholar 

  158. Nowacki A, Schober M, Nader L et al (2020) Deep brain stimulation for chronic cluster headache: meta-analysis of individual patient data. Ann Neurol. https://doi.org/10.1002/ana.25887

    Article  PubMed  Google Scholar 

  159. Schoenen J, Di Clemente L, Vandenheede M et al (2005) Hypothalamic stimulation in chronic cluster headache: a pilot study of efficacy and mode of action. Brain J Neurol 128(Pt 4):940–947. https://doi.org/10.1093/brain/awh411

    Article  CAS  Google Scholar 

  160. Leone M, Franzini A, Broggi G, Bussone G (2006) Hypothalamic stimulation for intractable cluster headache: long-term experience. Neurology 67(1):150–152. https://doi.org/10.1212/01.wnl.0000223319.56699.8a

    Article  PubMed  Google Scholar 

  161. Monsalve GA (2012) Motor cortex stimulation for facial chronic neuropathic pain: A review of the literature. Surg Neurol Int 3(Suppl 4):S290–S311. https://doi.org/10.4103/2152-7806.103023

    Article  PubMed  PubMed Central  Google Scholar 

  162. Fontaine D, Hamani C, Lozano A (2009) Efficacy and safety of motor cortex stimulation for chronic neuropathic pain: critical review of the literature. J Neurosurg 110(2):251–256. https://doi.org/10.3171/2008.6.17602

    Article  PubMed  Google Scholar 

  163. Graff-Radford SB (2009) Facial pain. Neurologist 15(4):171–177. https://doi.org/10.1097/NRL.0b013e31819827d8

    Article  PubMed  Google Scholar 

  164. Henderson JM, Lad SP (2006) Motor cortex stimulation and neuropathic facial pain. Neurosurg Focus 21(6):E6. https://doi.org/10.3171/foc.2006.21.6.9

    Article  PubMed  Google Scholar 

  165. Nuti C, Peyron R, Garcia-Larrea L et al (2005) Motor cortex stimulation for refractory neuropathic pain: four year outcome and predictors of efficacy. Pain 118(1–2):43–52. https://doi.org/10.1016/j.pain.2005.07.020

    Article  PubMed  Google Scholar 

  166. Rasche D, Ruppolt M, Stippich C, Unterberg A, Tronnier VM (2006) Motor cortex stimulation for long-term relief of chronic neuropathic pain: a 10 year experience. Pain 121(1–2):43–52. https://doi.org/10.1016/j.pain.2005.12.006

    Article  PubMed  Google Scholar 

  167. Raslan AM, Nasseri M, Bahgat D, Abdu E, Burchiel KJ (2011) Motor cortex stimulation for trigeminal neuropathic or deafferentation pain: an institutional case series experience. Stereotact Funct Neurosurg 89(2):83–88. https://doi.org/10.1159/000323338

    Article  PubMed  Google Scholar 

  168. Mercier C, Léonard G (2011) Interactions between pain and the motor cortex: insights from research on phantom limb pain and complex regional pain syndrome. Physiother Can Physiother Can 63(3):305–314. https://doi.org/10.3138/ptc.2010-08p

    Article  PubMed  Google Scholar 

  169. Meyerson B (2005) Motor cortex stimulation–effective for neuropathic pain but the mode of action remains illusive. Pain 118(1–2):6–7. https://doi.org/10.1016/j.pain.2005.07.019

    Article  PubMed  Google Scholar 

  170. Kishima H, Saitoh Y, Osaki Y et al (2007) Motor cortex stimulation in patients with deafferentation pain: activation of the posterior insula and thalamus. J Neurosurg 107(1):43–48. https://doi.org/10.3171/JNS-07/07/0043

    Article  PubMed  Google Scholar 

  171. Slavin KV, Nersesyan H, Colpan ME, Munawar N (2007) Current algorithm for the surgical treatment of facial pain. Head Face Med 3:30. https://doi.org/10.1186/1746-160X-3-30

    Article  PubMed  PubMed Central  Google Scholar 

  172. Silberstein SD, Yuan H, Najib U et al (2020) Non-invasive vagus nerve stimulation for primary headache: a clinical update. Cephalalgia Int J Headache 40(12):1370–1384. https://doi.org/10.1177/0333102420941864

    Article  Google Scholar 

  173. Yuan H, Silberstein SD (2016) Vagus nerve and vagus nerve stimulation, a comprehensive review: part I. Headache 56(1):71–78. https://doi.org/10.1111/head.12647

    Article  PubMed  Google Scholar 

  174. Yuan H, Silberstein SD (2016) Vagus nerve and vagus nerve stimulation, a comprehensive review: Part II. Headache 56(2):259–266. https://doi.org/10.1111/head.12650

    Article  PubMed  Google Scholar 

  175. Yuan H, Silberstein SD (2016) Vagus nerve and vagus nerve stimulation, a comprehensive review: Part III. Headache 56(3):479–490. https://doi.org/10.1111/head.12649

    Article  PubMed  Google Scholar 

  176. Yuan H, Silberstein SD (2017) Vagus nerve stimulation and headache. Headache 57(Suppl 1):29–33. https://doi.org/10.1111/head.12721

    Article  PubMed  Google Scholar 

  177. Silberstein SD, Calhoun AH, Lipton RB et al (2016) Chronic migraine headache prevention with noninvasive vagus nerve stimulation: the EVENT study. Neurology 87(5):529–538. https://doi.org/10.1212/WNL.0000000000002918

    Article  PubMed  PubMed Central  Google Scholar 

  178. Goadsby PJ, de Coo IF, Silver N et al (2018) Non-invasive vagus nerve stimulation for the acute treatment of episodic and chronic cluster headache: a randomized, double-blind, sham-controlled ACT2 study. Cephalalgia Int J Headache 38(5):959–969. https://doi.org/10.1177/0333102417744362

    Article  Google Scholar 

  179. Gaul C, Diener H-C, Silver N et al (2016) Non-invasive vagus nerve stimulation for PREVention and Acute treatment of chronic cluster headache (PREVA): a randomised controlled study. Cephalalgia Int J Headache 36(6):534–546. https://doi.org/10.1177/0333102415607070

    Article  Google Scholar 

  180. Tassorelli C, Grazzi L, de Tommaso M et al (2018) Noninvasive vagus nerve stimulation as acute therapy for migraine: the randomized PRESTO study. Neurology 91(4):e364–e373. https://doi.org/10.1212/WNL.0000000000005857

    Article  PubMed  PubMed Central  Google Scholar 

  181. Diener H-C, Goadsby PJ, Ashina M et al (2019) Non-invasive vagus nerve stimulation (nVNS) for the preventive treatment of episodic migraine: the multicentre, double-blind, randomised, sham-controlled PREMIUM trial. Cephalalgia Int J Headache 39(12):1475–1487. https://doi.org/10.1177/0333102419876920

    Article  Google Scholar 

  182. Silberstein SD, Mechtler LL, Kudrow DB et al (2016) Non-invasive vagus nerve stimulation for the acute treatment of cluster headache: findings from the randomized, double-blind, sham-controlled ACT1 study. Headache 56(8):1317–1332. https://doi.org/10.1111/head.12896

    Article  PubMed  PubMed Central  Google Scholar 

  183. Marin J, Giffin N, Consiglio E, McClure C, Liebler E, Davies B (2018) Non-invasive vagus nerve stimulation for treatment of cluster headache: early UK clinical experience. J Headache Pain 19(1):114. https://doi.org/10.1186/s10194-018-0936-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Magis D, D’Ostilio K, Thibaut A et al (2017) Cerebral metabolism before and after external trigeminal nerve stimulation in episodic migraine. Cephalalgia Int J Headache 37(9):881–891. https://doi.org/10.1177/0333102416656118

    Article  Google Scholar 

  185. Chou DE, Shnayderman Yugrakh M, Winegarner D, Rowe V, Kuruvilla D, Schoenen J (2019) Acute migraine therapy with external trigeminal neurostimulation (ACME): a randomized controlled trial. Cephalalgia Int J Headache 39(1):3–14. https://doi.org/10.1177/0333102418811573

    Article  Google Scholar 

  186. Schoenen J, Vandersmissen B, Jeangette S et al (2013) Migraine prevention with a supraorbital transcutaneous stimulator: a randomized controlled trial. Neurology 80(8):697–704. https://doi.org/10.1212/WNL.0b013e3182825055

    Article  PubMed  Google Scholar 

  187. Lan L, Zhang X, Li X, Rong X, Peng Y (2017) The efficacy of transcranial magnetic stimulation on migraine: a meta-analysis of randomized controlled trials. J Headache Pain 18(1):86. https://doi.org/10.1186/s10194-017-0792-4

    Article  PubMed  PubMed Central  Google Scholar 

  188. Andreou AP, Holland PR, Akerman S, Summ O, Fredrick J, Goadsby PJ (2016) Transcranial magnetic stimulation and potential cortical and trigeminothalamic mechanisms in migraine. Brain J Neurol 139(Pt 7):2002–2014. https://doi.org/10.1093/brain/aww118

    Article  Google Scholar 

  189. Lipton RB, Dodick DW, Silberstein SD et al (2010) Single-pulse transcranial magnetic stimulation for acute treatment of migraine with aura: a randomised, double-blind, parallel-group, sham-controlled trial. Lancet Neurol 9(4):373–380. https://doi.org/10.1016/S1474-4422(10)70054-5

    Article  PubMed  Google Scholar 

  190. Gangitano M, Valero-Cabré A, Tormos JM, Mottaghy FM, Romero JR, Pascual-Leone A (2002) Modulation of input-output curves by low and high frequency repetitive transcranial magnetic stimulation of the motor cortex. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 113(8):1249–1257. https://doi.org/10.1016/s1388-2457(02)00109-8

    Article  Google Scholar 

Download references

Acknowledgements

We thank the French Academy of Medicine, the French Society of Neurosurgery, and the Foundation «Les Gueules Cassées» for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis-Marie Terrier.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terrier, LM., Hadjikhani, N. & Destrieux, C. The trigeminal pathways. J Neurol 269, 3443–3460 (2022). https://doi.org/10.1007/s00415-022-11002-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-022-11002-4

Keywords

Navigation