Skip to main content

Advertisement

Log in

Understanding current experimental models of glioblastoma-brain microenvironment interactions

  • Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Glioblastoma (GBM) is a common and devastating primary brain tumor, with median survival of 16–18 months after diagnosis in the setting of substantial resistance to standard-of-care and inevitable tumor recurrence. Recent work has implicated the brain microenvironment as being critical for GBM proliferation, invasion, and resistance to treatment. GBM does not operate in isolation, with neurons, astrocytes, and multiple immune populations being implicated in GBM tumor progression and invasiveness. The goal of this review article is to provide an overview of the available in vitro, ex vivo, and in vivo experimental models for assessing GBM-brain interactions, as well as discuss each model’s relative strengths and limitations. Current in vitro models discussed will include 2D and 3D co-culture platforms with various cells of the brain microenvironment, as well as spheroids, whole organoids, and models of fluid dynamics, such as interstitial flow. An overview of in vitro and ex vivo organotypic GBM brain slices is also provided. Finally, we conclude with a discussion of the various in vivo rodent models of GBM, including xenografts, syngeneic grafts, and genetically-engineered models of GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abdolahi S, Ghazvinian Z, Muhammadnejad S et al (2022) Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J Transl Med 20(1):206. https://doi.org/10.1186/s12967-022-03405-8

    Article  PubMed  PubMed Central  Google Scholar 

  2. Adhikaree J, Franks HA, Televantos C et al (2019) Impaired circulating myeloid CD1c + dendritic cell function in human glioblastoma is restored by p38 inhibition - implications for the next generation of DC vaccines. Oncoimmunology 8(7):1593803. https://doi.org/10.1080/2162402X.2019.1593803

    Article  PubMed  PubMed Central  Google Scholar 

  3. Akkari L, Bowman RL, Tessier J et al (2020) Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Sci Transl Med 12(552). https://doi.org/10.1126/scitranslmed.aaw7843

  4. Alban TJ, Bayik D, Otvos B et al (2020) Glioblastoma myeloid-derived suppressor cell Subsets Express Differential Macrophage Migration Inhibitory factor receptor profiles that can be targeted to reduce Immune suppression. Front Immunol 11:1191. https://doi.org/10.3389/fimmu.2020.01191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alcaniz J, Winkler L, Dahlmann M et al (2023) Clinically relevant glioblastoma patient-derived xenograft models to guide drug development and identify molecular signatures. Front Oncol 13:1129627. https://doi.org/10.3389/fonc.2023.1129627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Andersen BM, Faust Akl C, Wheeler MA et al (2021) Glial and myeloid heterogeneity in the brain tumour microenvironment. Nat Rev Cancer 21(12):786–802. https://doi.org/10.1038/s41568-021-00397-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anido J, Saez-Borderias A, Gonzalez-Junca A et al (2010) TGF-beta receptor inhibitors target the CD44(high)/Id1(high) glioma-initiating Cell Population in Human Glioblastoma. Cancer Cell 18(6):655–668. https://doi.org/10.1016/j.ccr.2010.10.023

    Article  CAS  PubMed  Google Scholar 

  8. Arabzade A, Zhao Y, Varadharajan S et al (2021) ZFTA-RELA Dictates Oncogenic Transcriptional Programs to Drive Aggressive Supratentorial Ependymoma. Cancer Discov 11(9):2200–2215. https://doi.org/10.1158/2159-8290.CD-20-1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bassil R, Shields K, Granger K et al (2021) Improved modeling of human AD with an automated culturing platform for iPSC neurons, astrocytes and microglia. Nat Commun 12(1):5220. https://doi.org/10.1038/s41467-021-25344-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bausart M, Preat V, Malfanti A (2022) Immunotherapy for glioblastoma: the promise of combination strategies. J Exp Clin Cancer Res 41(1):35. https://doi.org/10.1186/s13046-022-02251-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bian S, Repic M, Guo Z et al (2018) Genetically engineered cerebral organoids model Brain Tumor formation. Nat Methods 15(8):631–639. https://doi.org/10.1038/s41592-018-0070-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Binello E, Qadeer ZA, Kothari HP et al (2012) Stemness of the CT-2A Immunocompetent Mouse Brain Tumor Model: characterization in Vitro. J Cancer 3:166–174. https://doi.org/10.7150/jca.4149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bodmer S, Strommer K, Frei K et al (1989) Immunosuppression and transforming growth factor-beta in glioblastoma. Preferential production of transforming growth factor-beta 2. J Immunol 143(10):3222–3229

    Article  CAS  PubMed  Google Scholar 

  14. Bolli E, Scherger M, Arnouk SM et al (2021) Targeted repolarization of Tumor-Associated macrophages via Imidazoquinoline-Linked Nanobodies. Adv Sci (Weinh) 8(10):2004574. https://doi.org/10.1002/advs.202004574

    Article  CAS  PubMed  Google Scholar 

  15. Brandao M, Simon T, Critchley G et al (2019) Astrocytes, the rising stars of the glioblastoma microenvironment. Glia 67(5):779–790. https://doi.org/10.1002/glia.23520

    Article  PubMed  Google Scholar 

  16. Bruns J, Egan T, Mercier P et al (2023) Glioblastoma spheroid growth and chemotherapeutic responses in single and dual-stiffness hydrogels. Acta Biomater 163:400–414. https://doi.org/10.1016/j.actbio.2022.05.048

    Article  CAS  PubMed  Google Scholar 

  17. Calori IR, Alves SR, Bi H et al (2022) Type-I Collagen/Collagenase modulates the 3D structure and behavior of Glioblastoma Spheroid models. ACS Appl Bio Mater 5(2):723–733. https://doi.org/10.1021/acsabm.1c01138

    Article  CAS  PubMed  Google Scholar 

  18. Cancer Genome Atlas Research (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068. https://doi.org/10.1038/nature07385

    Article  ADS  CAS  Google Scholar 

  19. Carlson JC, Cantu Gutierrez M, Lozzi B et al (2021) Identification of diverse Tumor endothelial cell populations in malignant glioma. Neuro Oncol 23(6):932–944. https://doi.org/10.1093/neuonc/noaa297

    Article  CAS  PubMed  Google Scholar 

  20. Cheema TA, Wakimoto H, Fecci PE et al (2013) Multifaceted oncolytic virus therapy for glioblastoma in an immunocompetent cancer stem cell model. Proc Natl Acad Sci U S A 110(29):12006–12011. https://doi.org/10.1073/pnas.1307935110

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  21. Chen F, LoTurco J (2012) A method for stable transgenesis of radial glia lineage in rat neocortex by piggyBac mediated transposition. J Neurosci Methods 207(2) 172 – 80. https://doi.org/10.1016/j.jneumeth.2012.03.016

  22. Chen ML, Pittet MJ, Gorelik L et al (2005) Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci U S A 102(2):419–424. https://doi.org/10.1073/pnas.0408197102

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Chen S, Lai SWT, Brown CE et al (2021) Harnessing and enhancing macrophage phagocytosis for Cancer Therapy. Front Immunol 12:635173. https://doi.org/10.3389/fimmu.2021.635173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen D, Varanasi SK, Hara T et al (2023) CTLA-4 blockade induces a microglia-Th1 cell partnership that stimulates microglia phagocytosis and anti-tumor function in glioblastoma. Immunity 56(9):2086–2104e8. https://doi.org/10.1016/j.immuni.2023.07.015

    Article  CAS  PubMed  Google Scholar 

  25. Chiavari M, Ciotti GMP, Navarra P et al (2019) Pro-inflammatory activation of a New Immortalized Human Microglia Cell line. Brain Sci 9(5). https://doi.org/10.3390/brainsci9050111

  26. Civita P, D ML, Pilkington GJ (2019) Pre-clinical drug testing in 2D and 3D human in Vitro models of Glioblastoma incorporating non-neoplastic astrocytes: Tunneling Nano tubules and mitochondrial transfer modulates cell behavior and therapeutic respons. Int J Mol Sci 20(23). https://doi.org/10.3390/ijms20236017

  27. Coniglio S, Miller I, Symons M et al (2016) Coculture assays to study macrophage and Microglia Stimulation of Glioblastoma Invasion. J Vis Exp 116https://doi.org/10.3791/53990

  28. Cornelison RC, Brennan CE, Kingsmore KM et al (2018) Convective forces increase CXCR4-dependent glioblastoma cell invasion in GL261 murine model. Sci Rep 8(1):17057. https://doi.org/10.1038/s41598-018-35141-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cornelison RC, Yuan JX, Tate KM et al (2022) A patient-designed tissue-engineered model of the infiltrative glioblastoma microenvironment. NPJ Precis Oncol 6(1):54. https://doi.org/10.1038/s41698-022-00290-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Costa B, Eisemann T, Strelau J et al (2019) Intratumoral platelet aggregate formation in a murine preclinical glioma model depends on podoplanin expression on Tumor cells. Blood Adv 3(7):1092–1102. https://doi.org/10.1182/bloodadvances.2018015966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cui X, Wang Q, Zhou J et al (2021) Single-cell transcriptomics of Glioblastoma reveals a unique Tumor Microenvironment and potential immunotherapeutic target against Tumor-Associated Macrophage. Front Oncol 11:710695. https://doi.org/10.3389/fonc.2021.710695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. D’Alessio A, Proietti G, Sica G et al (2019) Pathological and molecular features of Glioblastoma and its Peritumoral tissue. Cancers (Basel) 11(4). https://doi.org/10.3390/cancers11040469

  33. Decotret LR, Shi R, Thomas KN et al (2023) Development and validation of an advanced ex vivo brain slice invasion assay to model glioblastoma cell invasion into the complex brain microenvironment. Front Oncol 13:976945. https://doi.org/10.3389/fonc.2023.976945

    Article  PubMed  PubMed Central  Google Scholar 

  34. Douvaras P, Sun B, Wang M et al (2017) Directed differentiation of human pluripotent stem cells to Microglia. Stem Cell Reports 8(6):1516–1524. https://doi.org/10.1016/j.stemcr.2017.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Duval K, Grover H, Han LH et al (2017) Modeling physiological events in 2D vs. 3D cell culture. Physiol (Bethesda) 32(4):266–277. https://doi.org/10.1152/physiol.00036.2016

    Article  CAS  Google Scholar 

  36. Eisemann T, Costa B, Strelau J et al (2018) An advanced glioma cell invasion assay based on organotypic brain slice cultures. BMC Cancer 18(1):103. https://doi.org/10.1186/s12885-018-4007-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Engblom C, Pfirschke C, Pittet MJ (2016) The role of myeloid cells in cancer therapies. Nat Rev Cancer 16(7) 447 – 62. https://doi.org/10.1038/nrc.2016.54

  38. Eramo A, Ricci-Vitiani L, Zeuner A et al (2006) Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ 13(7):1238–1241. https://doi.org/10.1038/sj.cdd.4401872

    Article  CAS  PubMed  Google Scholar 

  39. Fedorova V, Pospisilova V, Vanova T et al (2023) Glioblastoma and cerebral organoids: development and analysis of an in vitro model for glioblastoma migration. Mol Oncol 17(4):647–663. https://doi.org/10.1002/1878-0261.13389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Feng SW, Wu ZS, Chiu YL et al (2023) Exploring the functional roles of Telomere Maintenance 2 in the tumorigenesis of Glioblastoma Multiforme and Drug Responsiveness to Temozolomide. Int J Mol Sci 24(11). https://doi.org/10.3390/ijms24119256

  41. Filley AC, Henriquez M, Dey M (2017) Recurrent glioma clinical trial, CheckMate-143: the game is not over yet. Oncotarget 8(53):91779–91794. https://doi.org/10.18632/oncotarget.21586

    Article  PubMed  PubMed Central  Google Scholar 

  42. Flores C, Pham C, Snyder D et al (2015) Novel role of hematopoietic stem cells in immunologic rejection of malignant gliomas. Oncoimmunology 4(3):e994374. https://doi.org/10.4161/2162402X.2014.994374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Genoud V, Marinari E, Nikolaev SI et al (2018) Responsiveness to anti-PD-1 and anti-CTLA-4 immune checkpoint blockade in SB28 and GL261 mouse glioma models. Oncoimmunology 7(12):e1501137. https://doi.org/10.1080/2162402X.2018.1501137

    Article  PubMed  PubMed Central  Google Scholar 

  44. Geribaldi-Doldan N, Fernandez-Ponce C, Quiroz RN et al (2020) The role of Microglia in Glioblastoma. Front Oncol 10:603495. https://doi.org/10.3389/fonc.2020.603495

    Article  PubMed  Google Scholar 

  45. Glasgow SM, Zhu W, Stolt CC et al (2014) Mutual antagonism between Sox10 and NFIA regulates diversification of glial lineages and glioma subtypes. Nat Neurosci 17(10):1322–1329. https://doi.org/10.1038/nn.3790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gomez-Oliva R, Dominguez-Garcia S, Carrascal L et al (2020) Evolution of experimental models in the study of Glioblastoma: toward finding efficient treatments. Front Oncol 10:614295. https://doi.org/10.3389/fonc.2020.614295

    Article  PubMed  Google Scholar 

  47. Goudarzi S, Rivera A, Butt AM et al (2016) Gas6 promotes oligodendrogenesis and myelination in the adult Central Nervous System and after Lysolecithin-Induced demyelination. ASN Neuro 8(5). https://doi.org/10.1177/1759091416668430

  48. Guillot A, Tacke F (2019) Liver macrophages: Old dogmas and New insights. Hepatol Commun 3(6):730–743. https://doi.org/10.1002/hep4.1356

    Article  PubMed  PubMed Central  Google Scholar 

  49. Guyon J, Strale PO, Romero-Garmendia I et al (2021) Co-culture of Glioblastoma Stem-like cells on patterned neurons to Study Migration and Cellular interactions. J Vis Exp 168. https://doi.org/10.3791/62213

  50. Haddad AF, Young JS, Amara D et al (2021) Mouse models of glioblastoma for the evaluation of novel therapeutic strategies. Neurooncol Adv 3(1):vdab100. https://doi.org/10.1093/noajnl/vdab100

  51. Hambardzumyan D, Parada LF, Holland EC et al (2011) Genetic modeling of gliomas in mice: new tools to tackle old problems. Glia 59(8):1155–1168. https://doi.org/10.1002/glia.21142

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hara T, Chanoch-Myers R, Mathewson ND et al (2021) Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell 39(6):779–792e11. https://doi.org/10.1016/j.ccell.2021.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Henrik Heiland D, Ravi VM, Behringer SP et al (2019) Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nat Commun 10(1):2541. https://doi.org/10.1038/s41467-019-10493-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hess KR, Broglio KR, Bondy ML (2004) Adult glioma incidence trends in the United States, 1977–2000. Cancer 101(10):2293–2299. https://doi.org/10.1002/cncr.20621

    Article  PubMed  Google Scholar 

  55. Hide T, Komohara Y, Miyasato Y et al (2018) Oligodendrocyte Progenitor Cells and Macrophages/Microglia Produce Glioma Stem Cell Niches at the Tumor Border EBioMedicine, 30: p. 94–104. https://doi.org/10.1016/j.ebiom.2018.02.024

  56. Hornschemeyer J, Kirschstein T, Reichart G et al (2022) Studies on Biological and Molecular effects of small-molecule kinase inhibitors on human glioblastoma cells and organotypic brain slices. Life (Basel) 12(8). https://doi.org/10.3390/life12081258

  57. Hsu SPC, Chen YC, Chiang HC et al (2020) Rapamycin and hydroxychloroquine combination alters macrophage polarization and sensitizes glioblastoma to immune checkpoint inhibitors. J Neurooncol 146(3):417–426. https://doi.org/10.1007/s11060-019-03360-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Humpel C (2015) Organotypic brain slice cultures: a review. Neuroscience 305:86–98. https://doi.org/10.1016/j.neuroscience.2015.07.086

    Article  CAS  PubMed  Google Scholar 

  59. Huse JT, Holland EC (2009) Genetically engineered mouse models of Brain cancer and the promise of preclinical testing. Brain Pathol 19(1):132–143. https://doi.org/10.1111/j.1750-3639.2008.00234.x

    Article  CAS  PubMed  Google Scholar 

  60. Hutter G, Theruvath J, Graef CM et al (2019) Microglia are effector cells of CD47-SIRPalpha antiphagocytic axis disruption against glioblastoma. Proc Natl Acad Sci U S A 116(3):997–1006. https://doi.org/10.1073/pnas.1721434116

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jacob F, Salinas RD, Zhang DY et al (2020) A patient-derived Glioblastoma Organoid Model and Biobank recapitulates Inter- and intra-tumoral heterogeneity. Cell 180(1):188–204e22. https://doi.org/10.1016/j.cell.2019.11.036

    Article  CAS  PubMed  Google Scholar 

  62. Jensen SS, Meyer M, Petterson SA et al (2016) Establishment and characterization of a Tumor Stem Cell-based Glioblastoma Invasion Model. PLoS ONE 11(7):e0159746. https://doi.org/10.1371/journal.pone.0159746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jimenez-Dinamarca I, Reyes-Lizana R, Lemunao-Inostroza Y et al (2022) GABAergic regulation of Astroglial Gliotransmission through Cx43 Hemichannels. Int J Mol Sci 23(21). https://doi.org/10.3390/ijms232113625

  64. Jin MZ, Han RR, Qiu GZ et al (2018) Organoids: an intermediate modeling platform in precision oncology. Cancer Lett 414:174–180. https://doi.org/10.1016/j.canlet.2017.11.021

    Article  CAS  PubMed  Google Scholar 

  65. Joseph JV, Magaut CR, Storevik S et al (2022) TGF-beta promotes microtube formation in glioblastoma through thrombospondin 1. Neuro Oncol 24(4):541–553. https://doi.org/10.1093/neuonc/noab212

    Article  CAS  PubMed  Google Scholar 

  66. Kapalczynska M, Kolenda T, Przybyla W et al (2018) 2D and 3D cell cultures - a comparison of different types of cancer cell cultures. Arch Med Sci 14(4):910–919. https://doi.org/10.5114/aoms.2016.63743

    Article  CAS  PubMed  Google Scholar 

  67. Kawashima T, Yashiro M, Kasashima H et al (2019) Oligodendrocytes Up-regulate the invasive activity of Glioblastoma Cells via the Angiopoietin-2 Signaling Pathway. Anticancer Res 39(2):577–584. https://doi.org/10.21873/anticanres.13150

    Article  CAS  PubMed  Google Scholar 

  68. Kerstetter-Fogle AE, Harris PLR, Brady-Kalnay SM et al (2020) Generation of Glioblastoma patient-derived intracranial xenografts for preclinical studies. Int J Mol Sci 21(14). https://doi.org/10.3390/ijms21145113

  69. Khalsa JK, Cheng N, Keegan J et al (2020) Immune phenotyping of diverse syngeneic murine brain tumors identifies immunologically distinct types. Nat Commun 11(1):3912. https://doi.org/10.1038/s41467-020-17704-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Khan MI, Jeong ES, Khan MZ et al (2023) Stem cells-derived exosomes alleviate neurodegeneration and Alzheimer’s pathogenesis by ameliorating neuroinflamation, and regulating the associated molecular pathways. Sci Rep 13(1):15731. https://doi.org/10.1038/s41598-023-42485-4

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim GB, Rincon Fernandez Pacheco D, Saxon D et al (2019) Rapid Generation of Somatic Mouse Mosaics with Locus-Specific, Stably Integrated Transgenic Elements. Cell 179(1):251–267e24. https://doi.org/10.1016/j.cell.2019.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kingsmore KM, Logsdon DK, Floyd DH et al (2016) Interstitial flow differentially increases patient-derived glioblastoma stem cell invasion via CXCR4, CXCL12, and CD44-mediated mechanisms. Integr Biol (Camb) 8(12):1246–1260. https://doi.org/10.1039/c6ib00167j

    Article  CAS  PubMed  Google Scholar 

  73. Lancaster MA, Renner M, Martin CA et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373–379. https://doi.org/10.1038/nature12517

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Lee J, Kotliarova S, Kotliarov Y et al (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9(5):391–403. https://doi.org/10.1016/j.ccr.2006.03.030

    Article  CAS  PubMed  Google Scholar 

  75. Leite DM, Zvar Baskovic B, Civita P et al (2020) A human co-culture cell model incorporating microglia supports glioblastoma growth and migration, and confers resistance to cytotoxics. FASEB J 34(1):1710–1727. https://doi.org/10.1096/fj.201901858RR

    Article  CAS  PubMed  Google Scholar 

  76. Lenting K, Verhaak R, Ter Laan M et al (2017) Glioma: experimental models and reality. Acta Neuropathol 133(2):263–282. https://doi.org/10.1007/s00401-017-1671-4

    Article  PubMed  PubMed Central  Google Scholar 

  77. Letchuman V, Ampie L, Shah AH et al (2022) Syngeneic murine glioblastoma models: reactionary immune changes and immunotherapy intervention outcomes. Neurosurg Focus 52(2):E5. https://doi.org/10.3171/2021.11.FOCUS21556

    Article  PubMed  Google Scholar 

  78. Li C, Xu X, Wei S et al (2021) Tumor-associated macrophages: potential therapeutic strategies and future prospects in cancer. J Immunother Cancer 9(1). https://doi.org/10.1136/jitc-2020-001341

  79. Li X, Guo X, Ling J et al (2021) Nanomedicine-based cancer immunotherapies developed by reprogramming tumor-associated macrophages. Nanoscale 13(9):4705–4727. https://doi.org/10.1039/d0nr08050k

    Article  CAS  PubMed  Google Scholar 

  80. Lim M, Xia Y, Bettegowda C et al (2018) Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol 15(7):422–442. https://doi.org/10.1038/s41571-018-0003-5

    Article  CAS  PubMed  Google Scholar 

  81. Linkous A, Balamatsias D, Snuderl M et al (2019) Modeling patient-derived glioblastoma with cerebral organoids. Cell Rep 26(12):3203–3211e5. https://doi.org/10.1016/j.celrep.2019.02.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu P, Griffiths S, Veljanoski D et al (2021) Preclinical models of glioblastoma: limitations of current models and the promise of new developments. Expert Rev Mol Med 23:e20. https://doi.org/10.1017/erm.2021.20

    Article  CAS  PubMed  Google Scholar 

  83. Loras A, Gonzalez-Bonet LG, Gutierrez-Arroyo JL et al (2023) Neural stem cells as potential glioblastoma cells of Origin. Life (Basel) 13(4). https://doi.org/10.3390/life13040905

  84. Lu Y, Jiang F, Zheng X et al (2011) TGF-beta1 promotes motility and invasiveness of glioma cells through activation of ADAM17. Oncol Rep 25(5):1329–1335. https://doi.org/10.3892/or.2011.1195

    Article  CAS  PubMed  Google Scholar 

  85. Maas RR, Soukup K, Fournier N et al (2023) The local microenvironment drives activation of neutrophils in human brain tumors. Cell. https://doi.org/10.1016/j.cell.2023.08.043

    Article  PubMed  Google Scholar 

  86. Marques-Torrejon MA, Gangoso E, Pollard SM (2018) Modelling glioblastoma tumour-host cell interactions using adult brain organotypic slice co-culture. Dis Model Mech 11(2). https://doi.org/10.1242/dmm.031435

  87. Martinez-Murillo R, Martinez A (2007) Standardization of an orthotopic mouse Brain Tumor model following transplantation of CT-2A astrocytoma cells. Histol Histopathol 22(12):1309–1326. https://doi.org/10.14670/HH-22.1309

    Article  CAS  PubMed  Google Scholar 

  88. Marumoto T, Tashiro A, Friedmann-Morvinski D et al (2009) Development of a novel mouse glioma model using lentiviral vectors. Nat Med 15(1):110–116. https://doi.org/10.1038/nm.1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. McCarthy RC, Lu DY, Alkhateeb A et al (2016) Characterization of a novel adult murine immortalized microglial cell line and its activation by amyloid-beta. J Neuroinflammation 13:21. https://doi.org/10.1186/s12974-016-0484-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Melissaridou S, Wiechec E, Magan M et al (2019) The effect of 2D and 3D cell cultures on treatment response, EMT profile and stem cell features in Head and Neck cancer. Cancer Cell Int 19:16. https://doi.org/10.1186/s12935-019-0733-1

    Article  PubMed  PubMed Central  Google Scholar 

  91. Merz F, Gaunitz F, Dehghani F et al (2013) Organotypic slice cultures of human glioblastoma reveal different susceptibilities to treatments. Neuro Oncol 15(6):670–681. https://doi.org/10.1093/neuonc/not003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Merzak A, McCrea S, Koocheckpour S et al (1994) Control of human glioma cell growth, migration and invasion in vitro by transforming growth factor beta 1. Br J Cancer 70(2):199–203. https://doi.org/10.1038/bjc.1994.280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Minami N, Maeda Y, Shibao S et al (2017) Organotypic brain explant culture as a drug evaluation system for malignant brain tumors. Cancer Med 6(11):2635–2645. https://doi.org/10.1002/cam4.1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Munson JM, Bellamkonda RV, Swartz MA (2013) Interstitial flow in a 3D microenvironment increases glioma invasion by a CXCR4-dependent mechanism. Cancer Res 73(5):1536–1546. https://doi.org/10.1158/0008-5472.CAN-12-2838

    Article  CAS  PubMed  Google Scholar 

  95. Nagamoto-Combs K, Kulas J, Combs CK (2014) A novel cell line from spontaneously immortalized murine microglia. J Neurosci Methods 233:187–198. https://doi.org/10.1016/j.jneumeth.2014.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Narvaez-Perez LF, Paz-Bermudez F, Avalos-Fuentes JA et al (2023) CRISPR/sgRNA-directed synergistic activation mediator (SAM) as a therapeutic tool for Parkinson s Disease. Gene Ther. https://doi.org/10.1038/s41434-023-00414-0

    Article  PubMed  PubMed Central  Google Scholar 

  97. Nishida-Aoki N, Gujral TS (2022) Polypharmacologic reprogramming of Tumor-Associated macrophages toward an inflammatory phenotype. Cancer Res 82(3):433–446. https://doi.org/10.1158/0008-5472.CAN-21-1428

    Article  CAS  PubMed  Google Scholar 

  98. Noffsinger B, Witter A, Sheybani N et al (2021) Technical choices significantly alter the adaptive immune response against immunocompetent murine gliomas in a model-dependent manner. J Neurooncol 154(2):145–157. https://doi.org/10.1007/s11060-021-03822-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ogawa J, Pao GM, Shokhirev MN et al (2018) Glioblastoma model using human cerebral organoids. Cell Rep 23(4):1220–1229. https://doi.org/10.1016/j.celrep.2018.03.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Okonogi N, Suzuki Y, Sato H et al (2018) Combination therapy of Intravenously Injected Microglia and Radiation Therapy Prolongs Survival in a rat model of spontaneous malignant glioma. Int J Radiat Oncol Biol Phys 102(3):601–608. https://doi.org/10.1016/j.ijrobp.2018.06.018

    Article  PubMed  Google Scholar 

  101. Olsson M, Hultman K, Dunoyer-Geindre S et al (2016) Epigenetic regulation of tissue-type plasminogen activator in human brain tissue and brain-derived cells. Gene Regul Syst Bio 10:9–13. https://doi.org/10.4137/GRSB.S30241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Osswald M, Jung E, Sahm F et al (2015) Brain tumour cells interconnect to a functional and resistant network. Nature 528(7580):93–98. https://doi.org/10.1038/nature16071

    Article  ADS  CAS  PubMed  Google Scholar 

  103. Ott M, Prins RM, Heimberger AB (2021) The immune landscape of common CNS malignancies: implications for immunotherapy. Nat Rev Clin Oncol 18(11):729–744. https://doi.org/10.1038/s41571-021-00518-9

    Article  PubMed  Google Scholar 

  104. Ou A, Yung WKA, Majd N (2020) Molecular mechanisms of Treatment Resistance in Glioblastoma. Int J Mol Sci 22(1). https://doi.org/10.3390/ijms22010351

  105. Oyarce C, Vizcaino-Castro A, Chen S et al (2021) Re-polarization of immunosuppressive macrophages to tumor-cytotoxic macrophages by repurposed metabolic Drugs. Oncoimmunology 10(1):1898753. https://doi.org/10.1080/2162402X.2021.1898753

    Article  PubMed  PubMed Central  Google Scholar 

  106. Padua D, Massague J (2009) Roles of TGFbeta in Metastasis. Cell Res 19(1):89–102. https://doi.org/10.1038/cr.2008.316

    Article  CAS  PubMed  Google Scholar 

  107. Pan Y, Yu Y, Wang X et al (2020) Tumor-Associated macrophages in Tumor Immunity. Front Immunol 11:583084. https://doi.org/10.3389/fimmu.2020.583084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Paolillo M, Comincini S, Schinelli S (2021) Vitro Glioblastoma models: a journey into the third dimension. Cancers (Basel) 13(10). https://doi.org/10.3390/cancers13102449

  109. Parker JJ, Lizarraga M, Waziri A et al A human glioblastoma organotypic slice culture model for study of Tumor Cell Migration and patient-specific effects of Anti-invasive Drugs. J Vis Exp, 2017(125). https://doi.org/10.3791/53557

  110. Pencheva N, de Gooijer MC, Vis DJ et al (2017) Identification of a Druggable Pathway Controlling Glioblastoma Invasiveness. Cell Rep 20(1):48–60. https://doi.org/10.1016/j.celrep.2017.06.036

    Article  CAS  PubMed  Google Scholar 

  111. Prinz M, Erny D, Hagemeyer N (2017) Ontogeny and homeostasis of CNS myeloid cells. Nat Immunol 18(4):385–392. https://doi.org/10.1038/ni.3703

    Article  CAS  PubMed  Google Scholar 

  112. Pustchi SE, Avci NG, Akay YM et al (2020) Astrocytes decreased the sensitivity of Glioblastoma Cells to Temozolomide and Bay 11-7082. Int J Mol Sci 21(19). https://doi.org/10.3390/ijms21197154

  113. Quereda V, Hou S, Madoux F et al (2018) A cytotoxic three-Dimensional-Spheroid, high-throughput assay using patient-derived glioma stem cells. SLAS Discov 23(8):842–849. https://doi.org/10.1177/2472555218775055

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ravi VM, Joseph K, Wurm J et al (2019) Human organotypic brain slice culture: a novel framework for environmental research in neuro-oncology. Life Sci Alliance 2(4). https://doi.org/10.26508/lsa.201900305

  115. Ravi VM, Neidert N, Will P et al (2022) T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10. Nat Commun 13(1):925. https://doi.org/10.1038/s41467-022-28523-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  116. Reilly KM, Loisel DA, Bronson RT et al (2000) Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nat Genet 26(1):109–113. https://doi.org/10.1038/79075

    Article  CAS  PubMed  Google Scholar 

  117. Saha D, Martuza RL, Rabkin SD (2017) Macrophage polarization contributes to Glioblastoma Eradication by Combination Immunovirotherapy and Immune Checkpoint Blockade. Cancer Cell 32(2):253–267e5. https://doi.org/10.1016/j.ccell.2017.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sampson JH, Gunn MD, Fecci PE et al (2020) Brain immunology and immunotherapy in brain tumours. Nat Rev Cancer 20(1):12–25. https://doi.org/10.1038/s41568-019-0224-7

    Article  CAS  PubMed  Google Scholar 

  119. Sarkar S, Yang R, Mirzaei R et al (2020) Control of Brain Tumor growth by reactivating myeloid cells with niacin. Sci Transl Med 12(537). https://doi.org/10.1126/scitranslmed.aay9924

  120. Scobie MR, Abood A, Rice CD (2023) Differential transcriptome responses in human THP-1 macrophages following exposure to T98G and LN-18 human glioblastoma secretions: a simplified Bioinformatics Approach to understanding patient-glioma-specific effects on Tumor-Associated macrophages. Int J Mol Sci 24(6). https://doi.org/10.3390/ijms24065115

  121. Setia H, Muotri AR (2019) Brain organoids as a model system for human neurodevelopment and Disease. Semin Cell Dev Biol 95:93–97. https://doi.org/10.1016/j.semcdb.2019.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Seyfried TN, el-Abbadi M, Roy ML (1992) Ganglioside distribution in murine neural tumors. Mol Chem Neuropathol 17(2):147–167. https://doi.org/10.1007/BF03159989

    Article  CAS  PubMed  Google Scholar 

  123. Shahab SW, Roggeveen CM, Sun J et al (2023) The LIN28B-let-7-PBK pathway is essential for group 3 medulloblastoma Tumor growth and survival. Mol Oncol 17(9):1784–1802. https://doi.org/10.1002/1878-0261.13477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shi Y, He X, Wang H et al (2023) Construction of a novel blood brain barrier-glioma microfluidic chip model: applications in the evaluation of permeability and anti-glioma activity of traditional Chinese medicine components. Talanta 253:123971. https://doi.org/10.1016/j.talanta.2022.123971

    Article  CAS  PubMed  Google Scholar 

  125. Srivastava S, Jackson C, Kim T et al (2019) A characterization of dendritic cells and their role in Immunotherapy in Glioblastoma: from preclinical studies to clinical trials. Cancers (Basel) 11(4). https://doi.org/10.3390/cancers11040537

  126. Stessin AM, Clausi MG, Zhao Z et al (2020) Repolarized macrophages, induced by intermediate stereotactic dose radiotherapy and immune checkpoint blockade, contribute to long-term survival in glioma-bearing mice. J Neurooncol 147(3):547–555. https://doi.org/10.1007/s11060-020-03459-y

    Article  CAS  PubMed  Google Scholar 

  127. Straehla JP, Hajal C, Safford HC et al (2022) A predictive microfluidic model of human glioblastoma to assess trafficking of blood-brain barrier-penetrant nanoparticles. Proc Natl Acad Sci U S A 119(23):e2118697119. https://doi.org/10.1073/pnas.2118697119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  129. Szatmari T, Lumniczky K, Desaknai S et al (2006) Detailed characterization of the mouse glioma 261 Tumor model for experimental glioblastoma therapy. Cancer Sci 97(6):546–553. https://doi.org/10.1111/j.1349-7006.2006.00208.x

    Article  CAS  PubMed  Google Scholar 

  130. Takahashi T (2019) Organoids for Drug Discovery and Personalized Medicine. Annu Rev Pharmacol Toxicol 59:447–462. https://doi.org/10.1146/annurev-pharmtox-010818-021108

    Article  CAS  PubMed  Google Scholar 

  131. Torsvik A, Stieber D, Enger PO et al (2014) U-251 revisited: genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells. Cancer Med 3(4):812–824. https://doi.org/10.1002/cam4.219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Uhl M, Aulwurm S, Wischhusen J et al (2004) SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 64(21):7954–7961. https://doi.org/10.1158/0008-5472.CAN-04-1013

    Article  CAS  PubMed  Google Scholar 

  133. van Asperen JV, van Bodegraven EJ, Robe P et al (2022) Determining glioma cell invasion and proliferation in ex vivo organotypic mouse brain slices using whole-mount immunostaining and tissue clearing. STAR Protoc 3(4):101703. https://doi.org/10.1016/j.xpro.2022.101703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Vaubel RA, Tian S, Remonde D et al (2020) Genomic and phenotypic characterization of a Broad Panel of patient-derived xenografts reflects the diversity of Glioblastoma. Clin Cancer Res 26(5):1094–1104. https://doi.org/10.1158/1078-0432.CCR-19-0909

    Article  CAS  PubMed  Google Scholar 

  135. Venkataramani V, Tanev DI, Strahle C et al (2019) Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573(7775):532–538. https://doi.org/10.1038/s41586-019-1564-x

    Article  ADS  CAS  PubMed  Google Scholar 

  136. Venkataramani V, Yang Y, Schubert MC et al (2022) Glioblastoma hijacks neuronal mechanisms for brain invasion. Cell 185(16):2899–2917e31. https://doi.org/10.1016/j.cell.2022.06.054

    Article  CAS  PubMed  Google Scholar 

  137. Venkatesh HS, Johung TB, Caretti V et al (2015) Neuronal activity promotes Glioma Growth through Neuroligin-3 secretion. Cell 161(4):803–816. https://doi.org/10.1016/j.cell.2015.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Venkatesh HS, Morishita W, Geraghty AC et al (2019) Electrical and synaptic integration of glioma into neural circuits. Nature 573(7775):539–545. https://doi.org/10.1038/s41586-019-1563-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  139. Watson DC, Bayik D, Storevik S et al (2023) GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity. Nat Cancer 4(5):648–664. https://doi.org/10.1038/s43018-023-00556-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wei J, Marisetty A, Schrand B et al (2019) Osteopontin mediates glioblastoma-associated macrophage infiltration and is a potential therapeutic target. J Clin Invest 129(1):137–149. https://doi.org/10.1172/JCI121266

    Article  PubMed  Google Scholar 

  141. Wei Z, Zhang X, Yong T et al (2021) Boosting anti-PD-1 therapy with metformin-loaded macrophage-derived microparticles. Nat Commun 12(1):440. https://doi.org/10.1038/s41467-020-20723-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  142. Woolf Z, Swanson MEV, Smyth LC et al (2021) Single-cell image analysis reveals a protective role for microglia in glioblastoma. Neurooncol Adv 3(1):vdab031. https://doi.org/10.1093/noajnl/vdab031

    Article  PubMed  PubMed Central  Google Scholar 

  143. Wouters R, Bevers S, Riva M et al (2020) Immunocompetent Mouse models in the search for effective immunotherapy in Glioblastoma. Cancers (Basel) 13(1). https://doi.org/10.3390/cancers13010019

  144. Wu W, Klockow JL, Zhang M et al (2021) Glioblastoma Multiforme (GBM): an overview of current therapies and mechanisms of resistance. Pharmacol Res 171:105780. https://doi.org/10.1016/j.phrs.2021.105780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Xiang X, Wang J, Lu D et al (2021) Targeting tumor-associated macrophages to synergize Tumor immunotherapy. Signal Transduct Target Ther 6(1):75. https://doi.org/10.1038/s41392-021-00484-9

    Article  PubMed  PubMed Central  Google Scholar 

  146. Xiao A, Brenneman B, Floyd D et al (2019) Statins affect human glioblastoma and other cancers through TGF-beta inhibition. Oncotarget 10(18):1716–1728. https://doi.org/10.18632/oncotarget.26733

    Article  PubMed  PubMed Central  Google Scholar 

  147. Xie R, Kessler T, Grosch J et al (2021) Tumor cell network integration in glioma represents a stemness feature. Neuro Oncol 23(5):757–769. https://doi.org/10.1093/neuonc/noaa275

    Article  CAS  PubMed  Google Scholar 

  148. Xie Z, Chen M, Lian J et al (2023) Glioblastoma-on-a-chip construction and therapeutic applications. Front Oncol 13:1183059. https://doi.org/10.3389/fonc.2023.1183059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Xu J, Zhang J, Zhang Z et al (2021) Hypoxic glioma-derived exosomes promote M2-like macrophage polarization by enhancing autophagy induction. Cell Death Dis 12(4):373. https://doi.org/10.1038/s41419-021-03664-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Xu C, Yuan X, Hou P et al (2023) Development of glioblastoma organoids and their applications in personalized therapy. Cancer Biol Med 20(5):353–368. https://doi.org/10.20892/j.issn.2095-3941.2023.0061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Xue N, Zhou Q, Ji M et al (2017) Chlorogenic acid inhibits glioblastoma growth through repolarizating macrophage from M2 to M1 phenotype. Sci Rep 7:39011. https://doi.org/10.1038/srep39011

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yang YK, Ogando CR, Wang See C et al (2018) Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther 9(1):131. https://doi.org/10.1186/s13287-018-0876-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yao M, Ventura PB, Jiang Y et al (2020) Astrocytic trans-differentiation completes a multicellular paracrine feedback Loop required for Medulloblastoma Tumor Growth. Cell 180(3):502–520e19. https://doi.org/10.1016/j.cell.2019.12.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ye XZ, Xu SL, Xin YH et al (2012) Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-beta1 signaling pathway. J Immunol 189(1):444–453. https://doi.org/10.4049/jimmunol.1103248

    Article  CAS  PubMed  Google Scholar 

  155. Yi L, Zhou C, Wang B et al (2013) Implantation of GL261 neurospheres into C57/BL6 mice: a more reliable syngeneic graft model for research on glioma-initiating cells. Int J Oncol 43(2):477–484. https://doi.org/10.3892/ijo.2013.1962

    Article  CAS  PubMed  Google Scholar 

  156. Yi Y, Hsieh IY, Huang X et al (2016) Glioblastoma Stem-Like cells: characteristics, Microenvironment, and Therapy. Front Pharmacol 7:477. https://doi.org/10.3389/fphar.2016.00477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yu K, Lin CJ, Hatcher A et al (2020) PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature 578(7793):166–171. https://doi.org/10.1038/s41586-020-1952-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhang M, Hutter G, Kahn SA et al (2016) Anti-CD47 treatment stimulates phagocytosis of Glioblastoma by M1 and M2 polarized macrophages and promotes M1 polarized macrophages in vivo. PLoS ONE 11(4):e0153550. https://doi.org/10.1371/journal.pone.0153550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhang H, Zhou Y, Cui B et al (2020) Novel insights into astrocyte-mediated signaling of proliferation, invasion and Tumor immune microenvironment in glioblastoma. Biomed Pharmacother 126:110086. https://doi.org/10.1016/j.biopha.2020.110086

    Article  CAS  PubMed  Google Scholar 

  160. Zhang L, Yu H, Yuan Y et al (2020) The necessity for standardization of glioma stem cell culture: a systematic review. Stem Cell Res Ther 11(1):84. https://doi.org/10.1186/s13287-020-01589-8

    Article  PubMed  PubMed Central  Google Scholar 

  161. Zhou C, Zhang Y, Dai J et al (2016) Pygo2 functions as a prognostic factor for glioma due to its up-regulation of H3K4me3 and promotion of MLL1/MLL2 complex recruitment. Sci Rep 6:22066. https://doi.org/10.1038/srep22066

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zhou J, Tang Z, Gao S et al (2020) Tumor-Associated macrophages: recent insights and therapies. Front Oncol 10:188. https://doi.org/10.3389/fonc.2020.00188

    Article  PubMed  PubMed Central  Google Scholar 

  163. Zhou F, Shi Q, Fan X et al (2022) Diverse macrophages constituted the Glioma Microenvironment and Influenced by PTEN Status. Front Immunol 13:841404. https://doi.org/10.3389/fimmu.2022.841404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The graphical illustration made in Fig. 1 was created by N.Y. using BioRender (https://www.biorender.com). This work was supported by the National Institutes of Health/National Institute of Neurological Disorders and Stroke/National Cancer Institute [R01NS124787 (N.Y., B.P.), R01NS126265 (B.P.), and U54CA274499 (B.P.)]. N.Y. was supported by a Medical Scientist Training Program Grant (T32GM007267), a Cancer Training Grant (T32CA009109), and a trainee fellowship from the University of Virginia Comprehensive Cancer Center.

Funding

This work was supported by the National Institutes of Health/National Institute of Neurological Disorders and Stroke/National Cancer Institute [R01NS124787 (N.Y., B.P.), R01NS126265 (B.P.), and U54CA274499 (B.P.)]. N.Y. was supported by a Medical Scientist Training Program Grant (T32GM007267), a Cancer Training Grant (T32CA009109), and a trainee fellowship from the University of Virginia Comprehensive Cancer Center.

Author information

Authors and Affiliations

Authors

Contributions

N.Y. and B.P. co-wrote this review.

Corresponding author

Correspondence to Benjamin W. Purow.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, N., Purow, B.W. Understanding current experimental models of glioblastoma-brain microenvironment interactions. J Neurooncol 166, 213–229 (2024). https://doi.org/10.1007/s11060-023-04536-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-023-04536-8

Keywords

Navigation