Skip to main content

Advertisement

Log in

Technical choices significantly alter the adaptive immune response against immunocompetent murine gliomas in a model-dependent manner

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Due to the recent rise in immunotherapy research to treat glioblastoma (GBM), immunocompetent mouse models have become increasingly crucial. However, the character and kinetics of the immune response against the most prevalent immunocompetent GBM models, GL261 and CT2A, have not been well studied, nor has the impact of commonly-used marker proteins and foreign antigens.

Methods

In this study, we compared the immune response in these models using flow cytometry and immunohistochemistry as well as investigated several factors that influence the immune response, including kinetics, tumor size, and expression of commonly-used marker proteins and foreign antigens. We hypothesize that these factors influence the immune response enough to warrant consideration when studying new immunotherapeutic approaches for GBM.

Results

CT2A-Luc, but not GL261-Luc2, drastically increased the number of T cells in the brain compared with wild-type controls, and significantly altered CT2A’s responsiveness to anti-PD-1 antibody therapy. Additionally, a larger cell inoculum size in the GL261 model increased the T cell response’s magnitude at day 28 post-injection. CT2A and GL261 models both stimulate a peak T cell immune response at day 21 post-injection.

Conclusions

Our results suggest that the impact of foreign proteins like luciferase on the intracranial immune response is dependent upon the model, with CT2A being more sensitive to added markers. In particular, luciferase expression in CT2A could lead to meaningful misinterpretations of results from immune checkpoint inhibitor (ICI) studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. McGranahan T, Therkelsen KE, Ahmad S, Nagpal S (2019) Current State of Immunotherapy for Treatment of Glioblastoma. Curr Treat Options Oncol 20:24. https://doi.org/10.1007/s11864-019-0619-4

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yersal Ö (2017) Clinical outcome of patients with glioblastoma multiforme: Single center experience. J Oncol Sci 3:123–126. https://doi.org/10.1016/j.jons.2017.10.005

    Article  Google Scholar 

  3. Jackson CM, Choi J, Lim M (2019) Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat Immunol 20:1100–1109. https://doi.org/10.1038/s41590-019-0433-y

    Article  CAS  PubMed  Google Scholar 

  4. Schläger C, Körner H, Krueger M et al (2016) Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530:349–353. https://doi.org/10.1038/nature16939

    Article  CAS  PubMed  Google Scholar 

  5. Engelhardt B, Ransohoff RM (2012) Capture, crawl, cross: the T cell code to breach the blood–brain barriers. Trends Immunol 33:579–589. https://doi.org/10.1016/j.it.2012.07.004

    Article  CAS  PubMed  Google Scholar 

  6. Engelhardt B, Carare R, Bechmann I et al (2016) Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol 132:317–338

    Article  CAS  Google Scholar 

  7. Di Cintio F, Dal Bo M, Baboci L et al (2020) The Molecular and Microenvironmental Landscape of Glioblastomas: Implications for the Novel Treatment Choices. Front Neurosci 14:603647. https://doi.org/10.3389/fnins.2020.603647

    Article  PubMed  PubMed Central  Google Scholar 

  8. Grabowski MM, Sankey EW, Ryan KJ et al (2020) Immune suppression in gliomas. J Neuro-Oncology 151:1. https://doi.org/10.1007/s11060-020-03483-y

    Article  Google Scholar 

  9. Oh T, Fakurnejad S, Sayegh ET et al (2014) Immunocompetent murine models for the study of glioblastoma immunotherapy. J Transl Med 12:107. https://doi.org/10.1186/1479-5876-12-107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Szatmári T, Lumniczky K, Désaknai S et al (2006) Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci 97:546–553. https://doi.org/10.1111/j.1349-7006.2006.00208.x

    Article  CAS  PubMed  Google Scholar 

  11. Genoud V, Marinari E, Nikolaev SI et al (2018) Responsiveness to anti-PD-1 and anti-CTLA-4 immune checkpoint blockade in SB28 and GL261 mouse glioma models. Oncoimmunology 7:e1501137. https://doi.org/10.1080/2162402X.2018.1501137

    Article  PubMed  PubMed Central  Google Scholar 

  12. Khalsa JK, Cheng N, Keegan J et al (2020) Immune phenotyping of diverse syngeneic murine brain tumors identifies immunologically distinct types. Nat Commun 11:3912. https://doi.org/10.1038/s41467-020-17704-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beug ST, Beauregard CE, Healy C et al (2017) Smac mimetics synergize with immune checkpoint inhibitors to promote tumour immunity against glioblastoma. Nat Commun 8:14278. https://doi.org/10.1038/ncomms14278

    Article  CAS  PubMed Central  Google Scholar 

  14. Woroniecka KI, Rhodin KE, Dechant C et al (2020) 4-1BB Agonism Averts TIL Exhaustion and Licenses PD-1 Blockade in Glioblastoma and Other Intracranial Cancers. Clin Cancer Res 26:1349–1358. https://doi.org/10.1158/1078-0432.CCR-19-1068

    Article  CAS  PubMed  Google Scholar 

  15. Nakashima H, Alayo QA, Penaloza-MacMaster P et al (2018) Modeling tumor immunity of mouse glioblastoma by exhausted CD8 + T cells. Sci Rep 8:208. https://doi.org/10.1038/s41598-017-18540-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Amoozgar Z, Kloepper J, Ren J et al (2021) Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat Commun 12:2582. https://doi.org/10.1038/s41467-021-22885-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Belcaid Z, Berrevoets C, Choi J et al (2020) Low-dose oncolytic adenovirus therapy overcomes tumor-induced immune suppression and sensitizes intracranial gliomas to anti-PD-1 therapy. Neuro-Oncol Adv 2:1. https://doi.org/10.1093/noajnl/vdaa011

    Article  Google Scholar 

  18. Ohlfest JR, Andersen BM, Litterman AJ et al (2013) Vaccine Injection Site Matters: Qualitative and Quantitative Defects in CD8 T Cells Primed as a Function of Proximity to the Tumor in a Murine Glioma Model. J Immunol 190:613–620. https://doi.org/10.4049/jimmunol.1201557

    Article  CAS  PubMed  Google Scholar 

  19. Cornelison RC, Brennan CE, Kingsmore KM, Munson JM (2018) Convective forces increase CXCR4-dependent glioblastoma cell invasion in GL261 murine model. Sci Rep 8:17057. https://doi.org/10.1038/s41598-018-35141-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sanchez VE, Lynes JP, Walbridge S et al (2020) GL261 luciferase-expressing cells elicit an anti-tumor immune response: an evaluation of murine glioma models. Sci Rep 10:11003. https://doi.org/10.1038/s41598-020-67411-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. QuPath: Open source software for digital pathology image analysis | Scientific Reports. https://www.nature.com/articles/s41598-017-17204-5. Accessed 3 Aug 2021

  22. Hawkins E, Valley M, Scurria M et al (2007) One-Glo Luciferase Assay System: New Substrate, Better Reagent. Promega 97:30–32

    Google Scholar 

  23. Kefas B, Comeau L, Erdle N et al (2010) Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro-Oncol 12:1102–1112. https://doi.org/10.1093/neuonc/noq080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kefas B, Floyd DH, Comeau L et al (2013) A miR-297/hypoxia/DGK-α axis regulating glioblastoma survival. Neuro-Oncol 15:1652–1663. https://doi.org/10.1093/neuonc/not118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kanazawa H, Ohsawa K, Sasaki Y et al (2002) Macrophage/Microglia-specific Protein Iba1 Enhances Membrane Ruffling and Rac Activation via Phospholipase C-γ-dependent Pathway *. J Biol Chem 277:20026–20032. https://doi.org/10.1074/jbc.M109218200

    Article  CAS  PubMed  Google Scholar 

  26. Imai Y, Ibata I, Ito D et al (1996) A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 224:855–862. https://doi.org/10.1006/bbrc.1996.1112

    Article  CAS  PubMed  Google Scholar 

  27. Ito D, Imai Y, Ohsawa K et al (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57:1–9. https://doi.org/10.1016/s0169-328x(98)00040-0

    Article  CAS  PubMed  Google Scholar 

  28. Ai W, Li H, Song N et al (2013) Optimal Method to Stimulate Cytokine Production and Its Use in Immunotoxicity Assessment. Int J Environ Res Public Health 10:3834–3842. https://doi.org/10.3390/ijerph10093834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Korin B, Ben-Shaanan TL, Schiller M et al (2017) High-dimensional, single-cell characterization of the brain’s immune compartment. Nat Neurosci 20:1300–1309. https://doi.org/10.1038/nn.4610

    Article  CAS  PubMed  Google Scholar 

  30. Clark AJ, Safaee M, Oh T et al (2014) Stable luciferase expression does not alter immunologic or in vivo growth properties of GL261 murine glioma cells. J Transl Med 12:345. https://doi.org/10.1186/s12967-014-0345-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Podetz-Pedersen KM, Vezys V, Somia NV et al (2014) Cellular Immune Response Against Firefly Luciferase After Sleeping Beauty–Mediated Gene Transfer In Vivo. Hum Gene Ther 25:955–965. https://doi.org/10.1089/hum.2014.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liao JB, Ovenell KJ, Curtis EEM et al (2015) Preservation of tumor-host immune interactions with luciferase-tagged imaging in a murine model of ovarian cancer. J Immunother Cancer 3:16. https://doi.org/10.1186/s40425-015-0060-6

    Article  PubMed  PubMed Central  Google Scholar 

  33. Baklaushev VP, Kilpeläinen A, Petkov S et al (2017) Luciferase Expression Allows Bioluminescence Imaging But Imposes Limitations on the Orthotopic Mouse (4T1) Model of Breast Cancer. Sci Rep 7:7715. https://doi.org/10.1038/s41598-017-07851-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu H-S, Jan M-S, Chou C-K et al (1999) Is Green Fluorescent Protein Toxic to the Living Cells? Biochem Biophys Res Commun 260:712–717. https://doi.org/10.1006/bbrc.1999.0954

    Article  CAS  PubMed  Google Scholar 

  35. Taghizadeh RR, Sherley JL (2008) CFP and YFP, but Not GFP, Provide Stable Fluorescent Marking of Rat Hepatic Adult Stem Cells. J Biomed Biotechnol 2008:453590. https://doi.org/10.1155/2008/453590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stripecke R, del Carmen Villacres M, Skelton DC et al (1999) Immune response to green fluorescent protein: implications for gene therapy. Gene Ther 6:1305–1312. https://doi.org/10.1038/sj.gt.3300951

    Article  CAS  PubMed  Google Scholar 

  37. Huntington JA, Stein PE (2001) Structure and properties of ovalbumin. J Chromatogr B Biomed Sci App 756:189–198. https://doi.org/10.1016/s0378-4347(01)00108-6

    Article  CAS  Google Scholar 

  38. Karandikar SH, Sidney J, Sette A et al (2019) Identification of epitopes in ovalbumin that provide insights for cancer neoepitopes. JCI Insight 4:e127882

    Article  Google Scholar 

  39. Bellone M, Cantarella D, Castiglioni P et al (2000) Relevance of the tumor antigen in the validation of three vaccination strategies for melanoma. J Immunol Baltim Md 1950 165:2651–2656. https://doi.org/10.4049/jimmunol.165.5.2651

    Article  CAS  Google Scholar 

  40. Sosa RA, Murphey C, Ji N et al (2013) The Kinetics of Myelin Antigen Uptake by Myeloid Cells in the Central Nervous System during Experimental Autoimmune Encephalomyelitis. J Immunol 191:5848–5857. https://doi.org/10.4049/jimmunol.1300771

    Article  CAS  PubMed  Google Scholar 

  41. Radjavi A, Smirnov I, Derecki N, Kipnis J (2014) Dynamics of the meningeal CD4 + T-cell repertoire are defined by the cervical lymph nodes and facilitate cognitive task performance in mice. Mol Psychiatry 19:531–532. https://doi.org/10.1038/mp.2013.79

    Article  CAS  PubMed  Google Scholar 

  42. Rua R, McGavern DB (2018) Advances in Meningeal Immunity. Trends Mol Med 24:542–559. https://doi.org/10.1016/j.molmed.2018.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chandramohan V, Bao X, Yu X et al (2019) Improved efficacy against malignant brain tumors with EGFRwt/EGFRvIII targeting immunotoxin and checkpoint inhibitor combinations. J Immunother Cancer 7:142. https://doi.org/10.1186/s40425-019-0614-0

    Article  PubMed  PubMed Central  Google Scholar 

  44. Choi SH, Stuckey DW, Pignatta S et al (2017) Tumor Resection Recruits Effector T Cells and Boosts Therapeutic Efficacy of Encapsulated Stem Cells Expressing IFNβ in Glioblastomas. Clin Cancer Res 23:7047–7058. https://doi.org/10.1158/1078-0432.CCR-17-0077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to the UVA Molecular Imaging Core, the Flow Cytometry Core, Biorepository and Tissue Research Core, and the Research Histology Core for their assistance.

Funding

Thanks to the Schiff Foundation, National Institute of Health Grants F99CA234954, R01CA180699, and R21NS108057 for funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by BN, AW, NS, AX, LM, QZ, and ST. The first draft of the manuscript was written by BN and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Benjamin Purow.

Ethics declarations

Conflict of interest

No conflict of interest to report.

Ethical approval

Mouse protocols were approved by the IACUC committee at the University of Virginia (UVA).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4892.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noffsinger, B., Witter, A., Sheybani, N. et al. Technical choices significantly alter the adaptive immune response against immunocompetent murine gliomas in a model-dependent manner. J Neurooncol 154, 145–157 (2021). https://doi.org/10.1007/s11060-021-03822-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-021-03822-7

Keywords

Navigation