Skip to main content

Advertisement

Log in

Monitoring of intracerebellarly-administered natural killer cells with fluorine-19 MRI

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

A Correction to this article was published on 09 April 2019

This article has been updated

Abstract

Purpose

Medulloblastoma (MB) is the most common malignant brain tumor in children. Recent studies have shown the ability of natural killer (NK) cells to lyse MB cell lines in vitro, but in vivo successes remain elusive and the efficacy and fate of NK cells in vivo remain unknown.

Methods

To address these questions, we injected MB cells into the cerebellum of immunodeficient mice and examined tumor growth at various days after tumor establishment via bioluminescence imaging. NK cells were labeled with a fluorine-19 (19F) MRI probe and subsequently injected either intratumorally or contralaterally to the tumor in the cerebellum and effect on tumor growth was monitored.

Results

The 19F probe efficiently labeled the NK cells and exhibited little cytotoxicity. Fluorine-19 MRI confirmed the successful and accurate delivery of the labeled NK cells to the cerebellum of the mice. Administration of 19F–labeled NK cells suppressed MB growth, with the same efficacy as unlabeled cells. Immunohistochemistry confirmed the presence of NK cells within the tumor, which was associated with induction of apoptosis in tumor cells. NK cell migration to the tumor from a distal location as well as activation of apoptosis was also demonstrated by immunohstochemistry.

Conclusions

Our results show that NK cells present a novel opportunity for new strategies in MB treatment. Further, 19F-labeled NK cells can suppress MB growth while enabling 19F MRI to provide imaging feedback that can facilitate study and optimization of therapeutic paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 09 April 2019

    There was a typo in author Andrew Wahba’s name in the initial online publication. The original article has been corrected.

References

  1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109. https://doi.org/10.1007/s00401-007-0243-4

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gerber NU, Mynarek M, von Hoff K, Friedrich C, Resch A, Rutkowski S (2014) Recent developments and current concepts in medulloblastoma. Cancer Treat Rev 40:356–365. https://doi.org/10.1016/j.ctrv.2013.11.010

    Article  CAS  PubMed  Google Scholar 

  3. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, Eberhart CG, Parsons DW, Rutkowski S, Gajjar A, Ellison DW, Lichter P, Gilbertson RJ, Pomeroy SL, Kool M, Pfister SM (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123:465–472. https://doi.org/10.1007/s00401-011-0922-z

    Article  CAS  PubMed  Google Scholar 

  4. Cavalli FMG, Remke M, Rampasek L, Peacock J, Shih DJH, Luu B, Garzia L, Torchia J, Nor C, Morrissy AS, Agnihotri S, Thompson YY, Kuzan-Fischer CM, Farooq H, Isaev K, Daniels C, Cho BK, Kim SK, Wang KC, Lee JY, Grajkowska WA, Perek-Polnik M, Vasiljevic A, Faure-Conter C, Jouvet A, Giannini C, Nageswara Rao AA, Li KKW, Ng HK, Eberhart CG, Pollack IF, Hamilton RL, Gillespie GY, Olson JM, Leary S, Weiss WA, Lach B, Chambless LB, Thompson RC, Cooper MK, Vibhakar R, Hauser P, van Veelen MC, Kros JM, French PJ, Ra YS, Kumabe T, Lopez-Aguilar E, Zitterbart K, Sterba J, Finocchiaro G, Massimino M, Van Meir EG, Osuka S, Shofuda T, Klekner A, Zollo M, Leonard JR, Rubin JB, Jabado N, Albrecht S, Mora J, Van Meter TE, Jung S, Moore AS, Hallahan AR, Chan JA, Tirapelli DPC, Carlotti CG, Fouladi M, Pimentel J, Faria CC, Saad AG, Massimi L, Liau LM, Wheeler H, Nakamura H, Elbabaa SK, Perezpena-Diazconti M, de Leon CPF, Robinson S, Zapotocky M, Lassaletta A, Huang A, Hawkins CE, Tabori U, Bouffet E, Bartels U, Dirks PB, Rutka JT, Bader GD, Reimand J, Goldenberg A, Ramaswamy V, Taylor MD (2017) Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell 31:737–754 e736. https://doi.org/10.1016/j.ccell.2017.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carlotti CG Jr, Smith C, Rutka JT (2008) The molecular genetics of medulloblastoma: an assessment of new therapeutic targets. Neurosurg Rev 31:359–368. https://doi.org/10.1007/s10143-008-0146-4 (discussion 368 – 359)

    Article  PubMed  Google Scholar 

  6. Mulhern RK, Palmer SL, Merchant TE, Wallace D, Kocak M, Brouwers P, Krull K, Chintagumpala M, Stargatt R, Ashley DM, Tyc VL, Kun L, Boyett J, Gajjar A (2005) Neurocognitive consequences of risk-adapted therapy for childhood medulloblastoma. J Clin Oncol 23:5511–5519. https://doi.org/10.1200/JCO.2005.00.703

    Article  PubMed  Google Scholar 

  7. Grob ST, Levy JMM (2017) Improving diagnostic and therapeutic outcomes in pediatric brain tumors. Mol Diagn Ther. https://doi.org/10.1007/s40291-017-0299-3

    Article  Google Scholar 

  8. Castriconi R, Dondero A, Negri F, Bellora F, Nozza P, Carnemolla B, Raso A, Moretta L, Moretta A, Bottino C (2007) Both CD133 + and CD133- medulloblastoma cell lines express ligands for triggering NK receptors and are susceptible to NK-mediated cytotoxicity. Eur J Immunol 37:3190–3196. https://doi.org/10.1002/eji.200737546

    Article  CAS  PubMed  Google Scholar 

  9. Fernandez L, Portugal R, Valentin J, Martin R, Maxwell H, Gonzalez-Vicent M, Diaz MA, de Prada I, Perez-Martinez A (2013) In vitro natural killer cell immunotherapy for medulloblastoma. Front Oncol 3:94. https://doi.org/10.3389/fonc.2013.00094

    Article  PubMed  PubMed Central  Google Scholar 

  10. Perez-Martinez A, Fernandez L, Diaz MA (2016) The therapeutic potential of natural killer cells to target medulloblastoma. Expert Rev Anticancer Ther 16:573–576. https://doi.org/10.1080/14737140.2016.1184978

    Article  CAS  PubMed  Google Scholar 

  11. Denman CJ, Senyukov VV, Somanchi SS, Phatarpekar PV, Kopp LM, Johnson JL, Singh H, Hurton L, Maiti SN, Huls MH, Champlin RE, Cooper LJ, Lee DA (2012) Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS ONE 7:e30264. https://doi.org/10.1371/journal.pone.0030264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smyth MJ, Hayakawa Y, Takeda K, Yagita H (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2:850–861. https://doi.org/10.1038/nrc928

    Article  CAS  PubMed  Google Scholar 

  13. van den Broek MF, Kagi D, Zinkernagel RM, Hengartner H (1995) Perforin dependence of natural killer cell-mediated tumor control in vivo. Eur J Immunol 25:3514–3516. https://doi.org/10.1002/eji.1830251246

    Article  PubMed  Google Scholar 

  14. Smyth MJ, Thia KY, Cretney E, Kelly JM, Snook MB, Forbes CA, Scalzo AA (1999) Perforin is a major contributor to NK cell control of tumor metastasis. J Immunol 162:6658–6662

    CAS  PubMed  Google Scholar 

  15. Zhang C, Burger MC, Jennewein L, Genssler S, Schonfeld K, Zeiner P, Hattingen E, Harter PN, Mittelbronn M, Tonn T, Steinbach JP, Wels WS (2016) ErbB2/HER2-specific NK cells for targeted therapy of glioblastoma. J Natl Cancer Inst 108 https://doi.org/10.1093/jnci/djv375

  16. Alkins R, Burgess A, Kerbel R, Wels WS, Hynynen K (2016) Early treatment of HER2-amplified brain tumors with targeted NK-92 cells and focused ultrasound improves survival. Neuro Oncol 18:974–981. https://doi.org/10.1093/neuonc/nov318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jha P, Golovko D, Bains S, Hostetter D, Meier R, Wendland MF, Daldrup-Link HE (2010) Monitoring of natural killer cell immunotherapy using noninvasive imaging modalities. Cancer Res 70:6109–6113. https://doi.org/10.1158/0008-5472.CAN-09-3774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sta Maria NS, Barnes SR, Jacobs RE (2014) In vivo monitoring of natural killer cell trafficking during tumor immunotherapy. Magn Reson Insights 7:15–21. https://doi.org/10.4137/MRI.S13145

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bouchlaka MN, Ludwig KD, Gordon JW, Kutz MP, Bednarz BP, Fain SB, Capitini CM (2016) (19)F-MRI for monitoring human NK cells in vivo. Oncoimmunology 5:e1143996. https://doi.org/10.1080/2162402X.2016.1143996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang J, Chamberlain R, Etheridge M, Idiyatullin D, Corum C, Bischof J, Garwood M (2014) Quantifying iron-oxide nanoparticles at high concentration based on longitudinal relaxation using a three-dimensional SWIFT look-locker sequence. Magn Reson Med 71:1982–1988. https://doi.org/10.1002/mrm.25181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ruiz-Cabello J, Barnett BP, Bottomley PA, Bulte JW (2011) Fluorine (19F) MRS and MRI in biomedicine. NMR Biomed 24:114–129. https://doi.org/10.1002/nbm.1570

    Article  CAS  PubMed  Google Scholar 

  22. Ahrens ET, Bulte JW (2013) Tracking immune cells in vivo using magnetic resonance imaging. Nat Rev Immunol 13:755–763. https://doi.org/10.1038/nri3531

    Article  CAS  PubMed  Google Scholar 

  23. Somanchi SS, Kennis BA, Gopalakrishnan V, Lee DA, Bankson JA (2016) In vivo (19)F-magnetic resonance imaging of adoptively transferred NK cells. Methods Mol Biol 1441:317–332. https://doi.org/10.1007/978-1-4939-3684-7_27

    Article  CAS  PubMed  Google Scholar 

  24. Lim YT, Cho MY, Kang JH, Noh YW, Cho JH, Hong KS, Chung JW, Chung BH (2010) Perfluorodecalin/[InGaP/ZnS quantum dots] nanoemulsions as 19F MR/optical imaging nanoprobes for the labeling of phagocytic and nonphagocytic immune cells. Biomaterials 31:4964–4971. https://doi.org/10.1016/j.biomaterials.2010.02.065

    Article  CAS  PubMed  Google Scholar 

  25. Lichtenfels R, Biddison WE, Schulz H, Vogt AB, Martin R (1994) CARE-LASS (calcein-release-assay), an improved fluorescence-based test system to measure cytotoxic T lymphocyte activity. J Immunol Methods 172:227–239

    Article  CAS  PubMed  Google Scholar 

  26. Cholujova D, Jakubikova J, Kubes M, Arendacka B, Sapak M, Ihnatko R, Sedlak J (2008) Comparative study of four fluorescent probes for evaluation of natural killer cell cytotoxicity assays. Immunobiology 213:629–640. https://doi.org/10.1016/j.imbio.2008.02.006

    Article  CAS  PubMed  Google Scholar 

  27. Kelly WJ, Shah NJ, Subramaniam DS (2018) Management of brain metastases in epidermal growth factor receptor mutant non-small-cell lung cancer. Front Oncol 8:208. https://doi.org/10.3389/fonc.2018.00208

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lauko A, Thapa B, Venur VA, Ahluwalia MS (2018) Management of brain metastases in the new era of checkpoint inhibition. Curr Neurol Neurosci Rep 18:70. https://doi.org/10.1007/s11910-018-0877-8

    Article  CAS  PubMed  Google Scholar 

  29. Kwon HJ, Kim N, Kim HS (2017) Molecular checkpoints controlling natural killer cell activation and their modulation for cancer immunotherapy. Exp Mol Med 49:e311. https://doi.org/10.1038/emm.2017.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Seo H, Kim BS, Bae EA, Min BS, Han YD, Shin SJ, Kang CY (2018) IL21 therapy combined with PD-1 and Tim-3 blockade provides enhanced NK cell antitumor activity against MHC class I-deficient tumors. Cancer Immunol Res 6:685–695. https://doi.org/10.1158/2326-6066.CIR-17-0708

    Article  CAS  PubMed  Google Scholar 

  31. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S (2000) Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74:181–273

    Article  CAS  PubMed  Google Scholar 

  32. Chang TC, Carter RA, Li Y, Li Y, Wang H, Edmonson MN, Chen X, Arnold P, Geiger TL, Wu G, Peng J, Dyer M, Downing JR, Green DR, Thomas PG, Zhang J (2017) The neoepitope landscape in pediatric cancers. Genome Med 9:78. https://doi.org/10.1186/s13073-017-0468-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Knorr DA, Bachanova V, Verneris MR, Miller JS (2014) Clinical utility of natural killer cells in cancer therapy and transplantation. Semin Immunol 26:161–172. https://doi.org/10.1016/j.smim.2014.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Granzin M, Wagner J, Kohl U, Cerwenka A, Huppert V, Ullrich E (2017) Shaping of natural killer cell antitumor activity by ex vivo cultivation. Front Immunol 8:458. https://doi.org/10.3389/fimmu.2017.00458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Veluchamy JP, Kok N, van der Vliet HJ, Verheul HMW, de Gruijl TD, Spanholtz J (2017) The rise of allogeneic natural killer cells as a platform for cancer immunotherapy: recent innovations and future developments. Front Immunol 8:631. https://doi.org/10.3389/fimmu.2017.00631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gieryng A, Pszczolkowska D, Walentynowicz KA, Rajan WD, Kaminska B (2017) Immune microenvironment of gliomas. Lab Invest 97:498–518. https://doi.org/10.1038/labinvest.2017.19

    Article  CAS  PubMed  Google Scholar 

  37. Sherman H, Gitschier HJ, Rossi AE (2018) A novel three-dimensional immune oncology model for high-throughput testing of tumoricidal activity. Front Immunol 9:857. https://doi.org/10.3389/fimmu.2018.00857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Uong TNT, Lee KH, Ahn SJ, Kim KW, Min JJ, Hyun H, Yoon MS (2018) Real-time tracking of ex vivo-expanded natural killer cells toward human triple-negative breast cancers. Front Immunol 9:825. https://doi.org/10.3389/fimmu.2018.00825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Waiczies S, Niendorf T, Lombardi G (2017) Labeling of cell therapies: how can we get it right? Oncoimmunology 6:e1345403. https://doi.org/10.1080/2162402X.2017.1345403

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nabekura T, Lanier LL (2016) Tracking the fate of antigen-specific versus cytokine-activated natural killer cells after cytomegalovirus infection. J Exp Med 213:2745–2758. https://doi.org/10.1084/jem.20160726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Srinivas M, Heerschap A, Ahrens ET, Figdor CG, de Vries IJ (2010) (19)F MRI for quantitative in vivo cell tracking. Trends Biotechnol 28:363–370. https://doi.org/10.1016/j.tibtech.2010.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Helfer BM, Balducci A, Nelson AD, Janjic JM, Gil RR, Kalinski P, de Vries IJ, Ahrens ET, Mailliard RB (2010) Functional assessment of human dendritic cells labeled for in vivo (19)F magnetic resonance imaging cell tracking. Cytotherapy 12:238–250. https://doi.org/10.3109/14653240903446902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Srinivas M, Boehm-Sturm P, Figdor CG, de Vries IJ, Hoehn M (2012) Labeling cells for in vivo tracking using (19)F MRI. Biomaterials 33:8830–8840. https://doi.org/10.1016/j.biomaterials.2012.08.048

    Article  CAS  PubMed  Google Scholar 

  44. Ahrens ET, Helfer BM, O’Hanlon CF, Schirda C (2014) Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI. Magn Reson Med 72:1696–1701. https://doi.org/10.1002/mrm.25454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kodibagkar VD, Wang X, Mason RP (2008) Physical principles of quantitative nuclear magnetic resonance oximetry. Front Biosci 13:1371–1384

    Article  CAS  PubMed  Google Scholar 

  46. Einstein SA, Weegman BP, Firpo MT, Papas KK, Garwood M (2016) Development and validation of noninvasive magnetic resonance relaxometry for the in vivo assessment of tissue-engineered graft oxygenation. Tissue Eng Part C 22:1009–1017. https://doi.org/10.1089/ten.TEC.2016.0106

    Article  CAS  Google Scholar 

  47. Janjic JM, Srinivas M, Kadayakkara DK, Ahrens ET (2008) Self-delivering nanoemulsions for dual fluorine-19 MRI and fluorescence detection. J Am Chem Soc 130:2832–2841. https://doi.org/10.1021/ja077388j

    Article  CAS  PubMed  Google Scholar 

  48. Ahrens ET, Flores R, Xu H, Morel PA (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23:983–987. https://doi.org/10.1038/nbt1121

    Article  CAS  PubMed  Google Scholar 

  49. Fink C, Gaudet JM, Fox MS, Bhatt S, Viswanathan S, Smith M, Chin J, Foster PJ, Dekaban GA (2018) (19)F-perfluorocarbon-labeled human peripheral blood mononuclear cells can be detected in vivo using clinical MRI parameters in a therapeutic cell setting. Sci Rep 8:590. https://doi.org/10.1038/s41598-017-19031-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gaudet JM, Ribot EJ, Chen Y, Gilbert KM, Foster PJ (2015) Tracking the fate of stem cell implants with fluorine-19 MRI. PLoS ONE 10:e0118544. https://doi.org/10.1371/journal.pone.0118544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funding support from Addis Faith Foundation, Noah’s Light Foundation, American Cancer Society Award Number 118165-RSG-09-273-01-DDC and the Rally Foundation for Childhood Cancers to VG.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dean A. Lee, James A. Bankson or Vidya Gopalakrishnan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

All animal experiments were approved by Institutional Animal Care and Use Committee (IACUC).

Additional information

The original version of this article has been revised: Author Andrew Wahba's name has been corrected.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennis, B.A., Michel, K.A., Brugmann, W.B. et al. Monitoring of intracerebellarly-administered natural killer cells with fluorine-19 MRI. J Neurooncol 142, 395–407 (2019). https://doi.org/10.1007/s11060-019-03091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-019-03091-5

Keywords

Navigation