Skip to main content

Advertisement

Log in

The molecular genetics of medulloblastoma: an assessment of new therapeutic targets

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Medulloblastoma is the most common pediatric primary malignant intracranial neoplasm. The 5-year survival rates vary from 40% to 70% depending on clinical prognostic criteria, and many of the patients who survive exhibit long-term neurocognitive and/or neuroendocrine sequelae. Because of these results, research is required to increase our understanding of the basic biology of medulloblastoma, helping to refine patient stratification, decrease side effects of treatments, identify novel prognostic markers, and discover new less toxic therapies. The recognition that some medulloblastomas occur in familial cancer syndromes has led to some important discoveries in the molecular pathogenesis of medulloblastoma. These syndromes provide us with clues regarding alterations in key signaling or growth factor activation pathways that contribute to medulloblastoma formation. A better understanding of the molecular pathways involved in medulloblastoma formation may allow the discovery of new drugs that act on specific targets, yet many steps must still be taken before clinical use of new drugs. In addition, the identification of a novel signaling pathways in medulloblastoma is often accompanied by the quest for novel pharmacotherapeutics that have the potential to act favorably on this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baeza N, Masuoka J, Kleihues P, Ohgaki H (2003) Axin1 mutations but not deletions in cerebellar medulloblastomas. Oncogene 22:632–636

    Article  PubMed  CAS  Google Scholar 

  2. Barnfield PC, Zhang X, Thanabalasingham V, Yoshida M, Hui CC (2005) Negative regulation of gli1 and gli2 activator function by suppressor of fused through multiple mechanisms. Differentiation 73:397–405

    Article  PubMed  CAS  Google Scholar 

  3. Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG, Watkins DN, Chen JK, Cooper MK, Taipale J, Olson JM, Beachy PA (2002) Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297:1559–1561

    Article  PubMed  CAS  Google Scholar 

  4. Browd SR, Kenney AM, Gottfried ON, Yoon JW, Walterhouse D, Pedone CA, Fults DW (2006) N-myc can substitute for insulin-like growth factor signaling in a mouse model of sonic hedgehog-induced medulloblastoma. Cancer Res 66:2666–2672

    Article  PubMed  CAS  Google Scholar 

  5. Corcoran RB, Scott MP (2001) A mouse model for medulloblastoma and basal cell nevus syndrome. J Neurooncol 53:307–318

    Article  PubMed  CAS  Google Scholar 

  6. Corcoran RB, Scott MP (2006) Oxysterols stimulate sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc Natl Acad Sci U S A 103:8408–8413

    Article  PubMed  CAS  Google Scholar 

  7. Crawford JR, MacDonald TJ, Packer RJ (2007) Medulloblastoma in childhood: new biological advances. Lancet Neurol 6:1073–1085

    Article  PubMed  CAS  Google Scholar 

  8. Dahmen RP, Koch A, Denkhaus D, Tonn JC, Sorensen N, Berthold F, Behrens J, Birchmeier W, Wiestler OD, Pietsch T (2001) Deletions of axin1, a component of the Wnt/wingless pathway, in sporadic medulloblastomas. Cancer Res 61:7039–7043

    PubMed  CAS  Google Scholar 

  9. Del Valle L, Enam S, Lassak A, Wang JY, Croul S, Khalili K, Reiss K (2002) Insulin-like growth factor i receptor activity in human medulloblastomas. Clin Cancer Res 8:1822–1830

    PubMed  CAS  Google Scholar 

  10. Dellovade T, Romer JT, Curran T, Rubin LL (2006) The hedgehog pathway and neurological disorders. Annu Rev Neurosci 29:539–563

    Article  PubMed  CAS  Google Scholar 

  11. Eberhart CG, Tihan T, Burger PC (2000) Nuclear localization and mutation of beta-catenin in medulloblastomas. J Neuropathol Exp Neurol 59:333–337

    PubMed  CAS  Google Scholar 

  12. Ehlen HW, Buelens LA, Vortkamp A (2006) Hedgehog signaling in skeletal development. Birth Defects Res C Embryo Today 78:267–279

    Article  PubMed  CAS  Google Scholar 

  13. Ellison DW, Onilude OE, Lindsey JC, Lusher ME, Weston CL, Taylor RE, Pearson AD, Clifford SC (2005) Beta-catenin status predicts a favorable outcome in childhood medulloblastoma: The united kingdom children's cancer study group brain tumour committee. J Clin Oncol 23:7951–7957

    Article  PubMed  CAS  Google Scholar 

  14. Friedrich RE (2007) Diagnosis and treatment of patients with nevoid basal cell carcinoma syndrome [Gorlin–Goltz syndrome (GGS)]. Anticancer Res 27:1783–1787

    PubMed  Google Scholar 

  15. Fuccillo M, Joyner AL, Fishell G (2006) Morphogen to mitogen: the multiple roles of hedgehog signalling in vertebrate neural development. Nat Rev Neurosci 7:772–783

    Article  PubMed  CAS  Google Scholar 

  16. Geyer JR, Sposto R, Jennings M, Boyett JM, Axtell RA, Breiger D, Broxson E, Donahue B, Finlay JL, Goldwein JW, Heier LA, Johnson D, Mazewski C, Miller DC, Packer R, Puccetti D, Radcliffe J, Tao ML, Shiminski-Maher T (2005) Multiagent chemotherapy and deferred radiotherapy in infants with malignant brain tumors: a report from the children’s cancer group. J Clin Oncol 23:7621–7631

    Article  PubMed  Google Scholar 

  17. Giangaspero F, Eberhart CG, Haapasalo H, Pietsch T, Wiestler OD, Ellison DW (2007) Medulloblastoma. In: Louis DN, Ohgaki H, Wistler OD, Cavenne WK (eds) WHO classification of tumours of the central nervous system. International Agency for Research on Cancer, Lion, pp 132–140

    Google Scholar 

  18. Gilbertson RJ, Perry RH, Kelly PJ, Pearson AD, Lunec J (1997) Prognostic significance of her2 and her4 coexpression in childhood medulloblastoma. Cancer Res 57:3272–3280

    PubMed  CAS  Google Scholar 

  19. Gilbertson RJ (2004) Medulloblastoma: signalling a change in treatment. Lancet Oncol 5:209–218

    Article  PubMed  Google Scholar 

  20. Grill J, Sainte-Rose C, Jouvet A, Gentet JC, Lejars O, Frappaz D, Doz F, Rialland X, Pichon F, Bertozzi AI, Chastagner P, Couanet D, Habrand JL, Raquin MA, Le Deley MC, Kalifa C (2005) Treatment of medulloblastoma with postoperative chemotherapy alone: an SFOP prospective trial in young children. Lancet Oncol 6:573–580

    Article  PubMed  CAS  Google Scholar 

  21. Grill J, Bhangoo R (2007) Recent development in chemotherapy of paediatric brain tumours. Curr Opin Oncol 19:612–615

    PubMed  CAS  Google Scholar 

  22. Hamada H, Kurimoto M, Endo S, Ogiichi T, Akai T, Takaku A (1998) Turcot’s syndrome presenting with medulloblastoma and familiar adenomatous polyposis: a case report and review of the literature. Acta Neurochir (Wien) 140:631–632

    Article  CAS  Google Scholar 

  23. Hamilton SR, Liu B, Parsons RE, Papadopoulos N, Jen J, Powell SM, Krush AJ, Berk T, Cohen Z, Tetu B et al (1995) The molecular basis of Turcot’s syndrome. N Engl J Med 332:839–847

    Article  PubMed  CAS  Google Scholar 

  24. Hartmann W, Digon-Sontgerath B, Koch A, Waha A, Endl E, Dani I, Denkhaus D, Goodyer CG, Sorensen N, Wiestler OD, Pietsch T (2006) Phosphatidylinositol 3¢-kinase/AKT signaling is activated in medulloblastoma cell proliferation and is associated with reduced expression of PTEN. Clin Cancer Res 12:3019–3027

    Article  PubMed  CAS  Google Scholar 

  25. Hatton BA, Knoepfler PS, Kenney AM, Rowitch DH, de Alboran IM, Olson JM, Eisenman RN (2006) N-myc is an essential downstream effector of Shh signaling during both normal and neoplastic cerebellar growth. Cancer Res 66:8655–8661

    Article  PubMed  CAS  Google Scholar 

  26. Hernan R, Fasheh R, Calabrese C, Frank AJ, Maclean KH, Allard D, Barraclough R, Gilbertson RJ (2003) ErbB2 up-regulates s100a4 and several other prometastatic genes in medulloblastoma. Cancer Res 63:140–148

    PubMed  CAS  Google Scholar 

  27. Huang H, Mahler-Araujo BM, Sankila A, Chimelli L, Yonekawa Y, Kleihues P, Ohgaki H (2000) APC mutations in sporadic medulloblastomas. Am J Pathol 156:433–437

    PubMed  CAS  Google Scholar 

  28. Ingham PW, Placzek M (2006) Orchestrating ontogenesis: variations on a theme by sonic hedgehog. Nat Rev Genet 7:841–850

    Article  PubMed  CAS  Google Scholar 

  29. Johnson ML, Rajamannan N (2006) Diseases of Wnt signaling. Rev Endocr Metab Disord 7:41–49

    Article  PubMed  CAS  Google Scholar 

  30. Kelleher FC, Fennelly D, Rafferty M (2006) Common critical pathways in embryogenesis and cancer. Acta Oncol 45:375–388

    Article  PubMed  CAS  Google Scholar 

  31. Kim JY, Nelson AL, Algon SA, Graves O, Sturla LM, Goumnerova LC, Rowitch DH, Segal RA, Pomeroy SL (2003) Medulloblastoma tumorigenesis diverges from cerebellar granule cell differentiation in patched heterozygous mice. Dev Biol 263:50–66

    Article  PubMed  CAS  Google Scholar 

  32. Kimonis VE, Goldstein AM, Pastakia B, Yang ML, Kase R, DiGiovanna JJ, Bale AE, Bale SJ (1997) Clinical manifestations in 105 persons with nevoid basal cell carcinoma syndrome. Am J Med Genet 69:299–308

    Article  PubMed  CAS  Google Scholar 

  33. Kiselyov AS (2006) Targeting the hedgehog signaling pathway with small molecules. Anticancer Agents Med Chem 6:445–449

    Article  PubMed  CAS  Google Scholar 

  34. Lauth M, Bergstrom A, Shimokawa T, Toftgard R (2007) Inhibition of gli-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci U S A 104:8455–8460

    Article  PubMed  CAS  Google Scholar 

  35. Lee K, Jeong J, Kwak I, Yu CT, Lanske B, Soegiarto DW, Toftgard R, Tsai MJ, Tsai S, Lydon JP, DeMayo FJ (2006) Indian hedgehog is a major mediator of progesterone signaling in the mouse uterus. Nat Genet 38:1204–1209

    Article  PubMed  CAS  Google Scholar 

  36. Lee Y, Kawagoe R, Sasai K, Li Y, Russell HR, Curran T, McKinnon PJ (2007) Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene 26:6442–6447

    Article  PubMed  CAS  Google Scholar 

  37. Li XN, Shu Q, Su JM, Perlaky L, Blaney SM, Lau CC (2005) Valproic acid induces growth arrest, apoptosis, and senescence in medulloblastomas by increasing histone hyperacetylation and regulating expression of p21Cip1, CDK4, and CMYC. Mol Cancer Ther 4:1912–1922

    Article  PubMed  CAS  Google Scholar 

  38. Liu H, Mohamed O, Dufort D, Wallace VA (2003) Characterization of Wnt signaling components and activation of the Wnt canonical pathway in the murine retina. Dev Dyn 227:323–334

    Article  PubMed  CAS  Google Scholar 

  39. Malmer B, Feychting M, Lonn S, Ahlbom A, Henriksson R (2005) P53 genotypes and risk of glioma and meningioma. Cancer Epidemiol Biomarkers Prev 14:2220–2223

    Article  PubMed  CAS  Google Scholar 

  40. Marino S (2005) Medulloblastoma: developmental mechanisms out of control. Trends Mol Med 11:17–22

    Article  PubMed  CAS  Google Scholar 

  41. Mazzola CA, Pollack IF (2003) Medulloblastoma. Curr Treat Options Neurol 5:189–198

    Article  PubMed  Google Scholar 

  42. McCabe MG, Ichimura K, Liu L, Plant K, Backlund LM, Pearson DM, Collins VP (2006) High-resolution array-based comparative genomic hybridization of medulloblastomas and supratentorial primitive neuroectodermal tumors. J Neuropathol Exp Neurol 65:549–561

    Article  PubMed  CAS  Google Scholar 

  43. Mendrzyk F, Korshunov A, Toedt G, Schwarz F, Korn B, Joos S, Hochhaus A, Schoch C, Lichter P, Radlwimmer B (2006) Isochromosome breakpoints on 17p in medulloblastoma are flanked by different classes of DNA sequence repeats. Genes Chromosomes Cancer 45:401–410

    Article  PubMed  CAS  Google Scholar 

  44. Mulhern RK, Palmer SL, Merchant TE, Wallace D, Kocak M, Brouwers P, Krull K, Chintagumpala M, Stargatt R, Ashley DM, Tyc VL, Kun L, Boyett J, Gajjar A (2005) Neurocognitive consequences of risk-adapted therapy for childhood medulloblastoma. J Clin Oncol 23:5511–5519

    Article  PubMed  Google Scholar 

  45. Neben K, Korshunov A, Benner A, Wrobel G, Hahn M, Kokocinski F, Golanov A, Joos S, Lichter P (2004) Microarray-based screening for molecular markers in medulloblastoma revealed STK15 as independent predictor for survival. Cancer Res 64:3103–3111

    Article  PubMed  CAS  Google Scholar 

  46. Ng D, Stavrou T, Liu L, Taylor MD, Gold B, Dean M, Kelley MJ, Dubovsky EC, Vezina G, Nicholson HS, Byrne J, Rutka JT, Hogg D, Reaman GH, Goldstein AM (2005) Retrospective family study of childhood medulloblastoma. Am J Med Genet A 134:399–403

    PubMed  Google Scholar 

  47. Packer RJ, Cogen P, Vezina G, Rorke LB (1999) Medulloblastoma: clinical and biologic aspects. Neuro Oncol 1:232–250

    Article  PubMed  CAS  Google Scholar 

  48. Packer RJ, Rood BR, MacDonald TJ (2003) Medulloblastoma: present concepts of stratification into risk groups. Pediatr Neurosurg 39:60–67

    Article  PubMed  Google Scholar 

  49. Pan E, Pellarin M, Holmes E, Smirnov I, Misra A, Eberhart CG, Burger PC, Biegel JA, Feuerstein BG (2005) Isochromosome 17q is a negative prognostic factor in poor-risk childhood medulloblastoma patients. Clin Cancer Res 11:4733–4740

    Article  PubMed  CAS  Google Scholar 

  50. Paraf F, Jothy S, Van Meir EG (1997) Brain tumor-polyposis syndrome: two genetic diseases? J Clin Oncol 15:2744–2758

    PubMed  CAS  Google Scholar 

  51. Pizem J, Cort A, Zadravec-Zaletel L, Popovic M (2005) Survivin is a negative prognostic marker in medulloblastoma. Neuropathol Appl Neurobiol 31:422–428

    Article  PubMed  CAS  Google Scholar 

  52. Raffel C, Jenkins RB, Frederick L, Hebrink D, Alderete B, Fults DW, James CD (1997) Sporadic medulloblastomas contain PTCH mutations. Cancer Res 57:842–845

    PubMed  CAS  Google Scholar 

  53. Ray A, Ho M, Ma J, Parkes RK, Mainprize TG, Ueda S, McLaughlin J, Bouffet E, Rutka JT, Hawkins CE (2004) A clinicobiological model predicting survival in medulloblastoma. Clin Cancer Res 10:7613–7620

    Article  PubMed  CAS  Google Scholar 

  54. Reifenberger J, Wolter M, Weber RG, Megahed M, Ruzicka T, Lichter P, Reifenberger G (1998) Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 58:1798–1803

    PubMed  CAS  Google Scholar 

  55. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850

    Article  PubMed  CAS  Google Scholar 

  56. Ribi K, Relly C, Landolt MA, Alber FD, Boltshauser E, Grotzer MA (2005) Outcome of medulloblastoma in children: Long-term complications and quality of life. Neuropediatrics 36:357–365

    Article  PubMed  CAS  Google Scholar 

  57. Rice JM (2006) Inducible and transmissible genetic events and pediatric tumors of the nervous system. J Radiat Res (Tokyo) 47(Suppl B):B1–B11

    Article  CAS  Google Scholar 

  58. Romer J, Curran T (2005) Targeting medulloblastoma: small-molecule inhibitors of the sonic hedgehog pathway as potential cancer therapeutics. Cancer Res 65:4975–4978

    Article  PubMed  CAS  Google Scholar 

  59. Romer JT, Kimura H, Magdaleno S, Sasai K, Fuller C, Baines H, Connelly M, Stewart CF, Gould S, Rubin LL, Curran T (2004) Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/−)p53(−/−) mice. Cancer Cell 6:229–240

    Article  PubMed  CAS  Google Scholar 

  60. Rood BR, Zhang H, Weitman DM, Cogen PH (2002) Hypermethylation of HIC-1 and 17p allelic loss in medulloblastoma. Cancer Res 62:3794–3797

    PubMed  CAS  Google Scholar 

  61. Rossi MR, Conroy J, McQuaid D, Nowak NJ, Rutka JT, Cowell JK (2006) Array CGH analysis of pediatric medulloblastomas. Genes Chromosomes Cancer 45:290–303

    Article  PubMed  CAS  Google Scholar 

  62. Segditsas S, Tomlinson I (2006) Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 25:7531–7537

    Article  PubMed  CAS  Google Scholar 

  63. Shafaee Z, Schmidt H, Du W, Posner M, Weichselbaum R (2006) Cyclopamine increases the cytotoxic effects of paclitaxel and radiation but not cisplatin and gemcitabine in hedgehog expressing pancreatic cancer cells. Cancer Chemother Pharmacol 58:765–770

    Article  PubMed  CAS  Google Scholar 

  64. Sharghi-Namini S, Turmaine M, Meier C, Sahni V, Umehara F, Jessen KR, Mirsky R (2006) The structural and functional integrity of peripheral nerves depends on the glial-derived signal desert hedgehog. J Neurosci 26:6364–6376

    Article  PubMed  CAS  Google Scholar 

  65. Shu Q, Antalffy B, Su JM, Adesina A, Ou CN, Pietsch T, Blaney SM, Lau CC, Li XN (2006) Valproic acid prolongs survival time of severe combined immunodeficient mice bearing intracerebellar orthotopic medulloblastoma xenografts. Clin Cancer Res 12:4687–4694

    Article  PubMed  CAS  Google Scholar 

  66. Sjolund J, Manetopoulos C, Stockhausen MT, Axelson H (2005) The notch pathway in cancer: differentiation gone awry. Eur J Cancer 41:2620–2629

    Article  PubMed  CAS  Google Scholar 

  67. Strahm B, Malkin D (2006) Hereditary cancer predisposition in children: genetic basis and clinical implications. Int J Cancer 119:2001–2006

    Article  PubMed  CAS  Google Scholar 

  68. Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L, Scott MP, Beachy PA (2000) Effects of oncogenic mutations in smoothened and patched can be reversed by cyclopamine. Nature 406:1005–1009

    Article  PubMed  CAS  Google Scholar 

  69. Tas S, Avci O (2004) Rapid clearance of psoriatic skin lesions induced by topical cyclopamine. A preliminary proof of concept study. Dermatology 209:126–131

    Article  PubMed  CAS  Google Scholar 

  70. Taylor MD, Mainprize TG, Rutka JT (2000) Molecular insight into medulloblastoma and central nervous system primitive neuroectodermal tumor biology from hereditary syndromes: a review. Neurosurgery 47:888–901

    Article  PubMed  CAS  Google Scholar 

  71. Taylor MD, Liu L, Raffel C, Hui CC, Mainprize TG, Zhang X, Agatep R, Chiappa S, Gao L, Lowrance A, Hao A, Goldstein AM, Stavrou T, Scherer SW, Dura WT, Wainwright B, Squire JA, Rutka JT, Hogg D (2002) Mutations in SUFU predispose to medulloblastoma. Nat Genet 31:306–310

    Article  PubMed  CAS  Google Scholar 

  72. Taylor MD, Zhang X, Liu L, Hui CC, Mainprize TG, Scherer SW, Wainwright B, Hogg D, Rutka JT (2004) Failure of a medulloblastoma-derived mutant of SUFU to suppress Wnt signaling. Oncogene 23:4577–4583

    Article  PubMed  CAS  Google Scholar 

  73. Thompson MC, Fuller C, Hogg TL, Dalton J, Finkelstein D, Lau CC, Chintagumpala M, Adesina A, Ashley DM, Kellie SJ, Taylor MD, Curran T, Gajjar A, Gilbertson RJ (2006) Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 24:1924–1931

    Article  PubMed  CAS  Google Scholar 

  74. Van Meir EG (1998) “Turcot’s syndrome”: phenotype of brain tumors, survival and mode of inheritance. Int J Cancer 75:162–164

    Article  PubMed  Google Scholar 

  75. Wlodarski P, Grajkowska W, Lojek M, Rainko K, Jozwiak J (2006) Activation of Akt and Erk pathways in medulloblastoma. Folia Neuropathol 44:214–220

    PubMed  CAS  Google Scholar 

  76. Yokota N, Nishizawa S, Ohta S, Date H, Sugimura H, Namba H, Maekawa M (2002) Role of Wnt pathway in medulloblastoma oncogenesis. Int J Cancer 101:198–201

    Article  PubMed  CAS  Google Scholar 

  77. Zurawel RH, Allen C, Chiappa S, Cato W, Biegel J, Cogen P, de Sauvage F, Raffel C (2000) Analysis of PTCH/SMO/SHH pathway genes in medulloblastoma. Genes Chromosomes Cancer 27:44–51

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Rutka is a Scientist of the Canadian Institutes of Health Research. This work was supported in part by funds through the National Cancer Institute of Canada, the Ontario Cancer Research Network, Brainchild, and the Laurie Berman and Wiley Funds for Brain Tumor Research. Dr. Carlotti was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)—Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T. Rutka.

Additional information

Comments

Michael Carter, Bristol, UK

Carlotti, Smith and Rutka are to be congratulated on this concise, comprehensive, and authoritative review.

The unraveling of medulloblastoma genetics undoubtedly emerges as one of the great detective narratives in modern oncology. Its occurrence in recognized familial cancer syndromes led to understanding of how recognized molecular pathways (often those involved in normal tissue and organogenesis) could result in neoplasia when disordered. The elucidation of key signaling pathways such as Hh, Wnt, and Notch has demonstrated the tremendous convergence that exists among multitudes of molecular pathways resulting in the production of a tumor, histopathologically characterized as medulloblastoma. While terms such as Wnt, Hh, and Notch are buzzwords in contemporary neurooncology circles, it is easy to forget that these findings have arisen within the past decade. These are highly complex but fundamental processes, and the authors have done a great service in clearly outlining the nature and key components therein.

They have also outlined an up-to-date understanding of prognosis based on genetic stratification and emphasized the growing importance of clinico-biological modeling as a guide to treatment planning.

There is an excellent review of the current molecular technology in use in the laboratory investigation of tumor genetics. The authors outline a number of vulnerable sites in tumourigenic pathways and the possible routes whereby they may be antagonized therapeutically.

Increasingly, we move from the histopathological toward genetic classification of neoplastic diseases. With this understanding comes a quantum leap in the complexity of the demonstrated molecular systems. This complexity, while perplexing to the student, needs to be grasped, as it continually reveals targets among the signaling processes that may yet be the Achilles’ heel for novel therapeutic attack.

Recent advances in our current understanding of medulloblastoma will undoubtedly be a route map for the investigation of other difficult CNS tumors such as ependymoma and glioblastoma.

I very much hope that similar reviews will follow to guide us through the complexities of the story with these tumors.

Jun Yoshida, Nagoya, Japan

The authors have provided an overview of the genetic alterations in the tumorigenesis of medulloblastoma in a well-organized manner. They first focused on the familial cancer syndromes because some of them are strongly related to medulloblastoma and because clarification of the molecular genetics of these syndromes can lead to a better understanding of the molecular abnormality in medulloblastoma. They have also provided a comprehensive summary of abnormalities in the embryological signaling pathways in medulloblastoma, which are probably among the most important pathways in this tumor because medulloblastoma has the characteristics of neural stem cells and progenitor cells. Furthermore, they describe the strategies currently employed for the comprehensive analysis of gene state, transcriptional profiling, and protein expression. I think such studies using array techniques are gaining increasing importance and are essential for a better understanding of tumor biology. Finally, this paper describes promising approaches for the treatment of medulloblastoma. The authors have emphasized the need to acquire an in-depth knowledge of the molecular biology of medulloblastoma to develop novel therapeutic agents against this tumor, which I also completely agree to.

Dietmar Krex and Gabriele Schackert, Dresden, Germany

Considerable progress has been made in the elucidation of the molecular pathogenesis of medulloblastomas. This has resulted in a tremendous amount of data about genes and proteins of interest that are embedded in complex biochemical pathways and networks. Dr. Carlotti et al. present an excellent review in that field. They focus on three main signaling pathways, explaining their components and interactions and potential meaning for the tumor pathogenesis. The well-structured presentation helps to get a comprehensive and informative overview not only about the current status of the molecular biology of medulloblastomas, but also about recent experimental techniques and current molecular-based therapeutical strategies. They succeed to illustrate the paradigms of translational research, i.e., the interactions and the long way from basic molecular data to novel therapeutic compounds. This, in turn, is not only essential for those involved in Basic Sciences, but it also has a major implication for the generation of new therapeutic approaches and future clinical trials.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlotti Jr, C.G., Smith, C. & Rutka, J.T. The molecular genetics of medulloblastoma: an assessment of new therapeutic targets. Neurosurg Rev 31, 359–369 (2008). https://doi.org/10.1007/s10143-008-0146-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-008-0146-4

Keywords

Navigation