Skip to main content

In Vivo 19F-Magnetic Resonance Imaging of Adoptively Transferred NK Cells

  • Protocol
  • First Online:
Natural Killer Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1441))

Abstract

In order to assess the biodistribution, homing, and persistence of adoptively transferred natural killer (NK) cell immunotherapies, there is a need for imaging methodology suitable for use in preclinical studies with relevance to clinical translation. Amongst the available approaches, 19F-MRI is very appealing for in vivo imaging due to the absence of background signal, enabling clear detection of 19F labeled cells in vivo. Here we describe a methodology for in vivo imaging of adoptively transferred NK cells labeled with 19F nano-emulsion, using clinically translatable technology of 19F/1H magnetic resonance imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Somanchi SS, Senyukov VV, Denman CJ et al (2011) Expansion, purification, and functional assessment of human peripheral blood NK cells. J Vis Exp 48, e2540. doi:10.3791/2540

    Google Scholar 

  2. Denman CJ, Senyukov VV, Somanchi SS et al (2012) Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS One 7, e30264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Edinger M, Cao YA, Verneris MR et al (2003) Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood 101:640–648

    Article  CAS  PubMed  Google Scholar 

  4. Tavri S, Jha P, Meier R et al (2009) Optical imaging of cellular immunotherapy against prostate cancer. Mol Imaging 8:15–26

    Google Scholar 

  5. Leung K (2009) DiD-labeled anti-EpCAM-directed NK-92-scFv(MOC31) zeta cells. 2009 Aug 28 [Updated 2009 Sep 30]. In: Molecular imaging and contrast agent database (MICAD) [Internet]. National Center for Biotechnology Information (US), Bethesda; 2004–2013. http://www.ncbi.nlm.nih.gov/books/NBK23559/

  6. Lim YT, Cho MY, Noh YW et al (2009) Near-infrared emitting fluorescent nanocrystals-labeled natural killer cells as a platform technology for the optical imaging of immunotherapeutic cells-based cancer therapy. Nanotechnology 20:475102

    Article  PubMed  Google Scholar 

  7. Youniss FM, Sundaresan G, Graham LJ et al (2014) Near-infrared imaging of adoptive immune cell therapy in breast cancer model using cell membrane labeling. PLoS One 9, e109162

    Article  PubMed  PubMed Central  Google Scholar 

  8. Olson JA, Zeiser R, Beilhack A et al (2009) Tissue-specific homing and expansion of donor NK cells in allogeneic bone marrow transplantation. J Immunol 183:3219–3228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Meller B, Frohn C, Brand JM et al (2004) Monitoring of a new approach of immunotherapy with allogenic (111)In-labelled NK cells in patients with renal cell carcinoma. Eur J Nucl Med Mol Imaging 31:403–407

    Article  PubMed  Google Scholar 

  10. Matera L, Galetto A, Bello M et al (2006) In vivo migration of labeled autologous natural killer cells to liver metastases in patients with colon carcinoma. J Transl Med 4:49

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wagstaff J, Gibson C, Thatcher N et al (1982) A method for studying the dynamics of the primary migration of human lymphocytes using Indium-iii oxine cell labelling. Adv Exp Med Biol 149:153–160

    Article  CAS  PubMed  Google Scholar 

  12. Meier R, Piert M, Piontek G et al (2008) Tracking of [18F]FDG-labeled natural killer cells to HER2/neu-positive tumors. Nucl Med Biol 35:579–588

    Article  CAS  PubMed  Google Scholar 

  13. Melder RJ, Elmaleh D, Brownell AL et al (1994) A method for labeling cells for positron emission tomography (PET) studies. J Immunol Methods 175:79–87

    Article  CAS  PubMed  Google Scholar 

  14. Dotti G, Tian M, Savoldo B et al (2009) Repetitive noninvasive monitoring of HSV1-tk-expressing T cells intravenously infused into nonhuman primates using positron emission tomography and computed tomography with 18F-FEAU. Mol Imaging 8:230–237

    PubMed  PubMed Central  Google Scholar 

  15. Sheu AY, Zhang Z, Omary RA et al (2013) MRI-monitored transcatheter intra-arterial delivery of SPIO-labeled natural killer cells to hepatocellular carcinoma: preclinical studies in a rodent model. Invest Radiol 48:492–499

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mallett CL, McFadden C, Chen Y et al (2012) Migration of iron-labeled KHYG-1 natural killer cells to subcutaneous tumors in nude mice, as detected by magnetic resonance imaging. Cytotherapy 14:743–751

    Article  CAS  PubMed  Google Scholar 

  17. Daldrup-Link HE, Meier R, Rudelius M et al (2005) In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumors with magnetic resonance imaging. Eur Radiol 15:4–13

    Article  PubMed  Google Scholar 

  18. Meier R, Golovko D, Tavri S et al (2011) Depicting adoptive immunotherapy for prostate cancer in an animal model with magnetic resonance imaging. Magn Reson Med 65:756–763

    Article  CAS  PubMed  Google Scholar 

  19. Holland GN, Bottomley PA, Hinshaw WS (1977) 19F magnetic resonance imaging. J Magn Reson 28:133–136

    CAS  Google Scholar 

  20. Partlow KC, Chen J, Brant JA et al (2007) 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J 21:1647–1654

    Article  CAS  PubMed  Google Scholar 

  21. Boehm-Sturm P, Mengler L, Wecker S et al (2011) In vivo tracking of human neural stem cells with 19F magnetic resonance imaging. PLoS One 6, e29040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ahrens ET, Flores R, Xu H et al (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23:983–987

    Article  CAS  PubMed  Google Scholar 

  23. Bulte JW (2005) Hot spot MRI emerges from the background. Nat Biotechnol 23:945–946

    Article  CAS  PubMed  Google Scholar 

  24. Srinivas M, Heerschap A, Ahrens ET et al (2010) (19)F MRI for quantitative in vivo cell tracking. Trends Biotechnol 28:363–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Helfer BM, Balducci A, Nelson AD et al (2010) Functional assessment of human dendritic cells labeled for in vivo (19)F magnetic resonance imaging cell tracking. Cytotherapy 12:238–250

    Article  CAS  PubMed  Google Scholar 

  26. Srinivas M, Morel PA, Ernst LA et al (2007) Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magn Reson Med 58:725–734

    Article  CAS  PubMed  Google Scholar 

  27. Kadayakkara DK, Beatty PL, Turner MS et al (2010) Inflammation driven by overexpression of the hypoglycosylated abnormal mucin 1 (MUC1) links inflammatory bowel disease and pancreatitis. Pancreas 39:510–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Janjic JM, Srinivas M, Kadayakkara DK et al (2008) Self-delivering nanoemulsions for dual fluorine-19 MRI and fluorescence detection. J Am Chem Soc 130:2832–2841

    Article  CAS  PubMed  Google Scholar 

  29. Aoki Y, Hashizume R, Ozawa T et al (2012) An experimental xenograft mouse model of diffuse pontine glioma designed for therapeutic testing. J Neurooncol 108:29–35

    Article  PubMed  Google Scholar 

  30. Brockmann MA, Westphal M, Lamszus K (2003) Improved method for the intracerebral engraftment of tumour cells and intratumoural treatment using a guide screw system in mice. Acta Neurochir (Wien) 145:777–781

    Article  CAS  Google Scholar 

  31. Lal S, Lacroix M, Tofilon P et al (2000) An implantable guide-screw system for brain tumor studies in small animals. J Neurosurg 92:326–333

    Article  CAS  PubMed  Google Scholar 

  32. Donoghue JF, Bogler O, Johns TG (2011) A simple guide screw method for intracranial xenograft studies in mice. J Vis Exp 55, e3157. doi:10.3791/3157

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by funding from the Addis Faith Foundation to VG, CURE Childhood Cancer funding to DAL, and by MD Anderson Cancer Center’s Core Grant (P30-CA016672).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Bankson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Somanchi, S.S., Kennis, B.A., Gopalakrishnan, V., Lee, D.A., Bankson, J.A. (2016). In Vivo 19F-Magnetic Resonance Imaging of Adoptively Transferred NK Cells. In: Somanchi, S. (eds) Natural Killer Cells. Methods in Molecular Biology, vol 1441. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3684-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3684-7_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3682-3

  • Online ISBN: 978-1-4939-3684-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics