Skip to main content

Advertisement

Log in

Glioblastoma and acute myeloid leukemia: malignancies with striking similarities

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Acute myeloid leukemia (AML) and glioblastoma (GB) are two malignancies associated with high incidence of treatment refractoriness and generally, uniformly poor survival outcomes. While the former is a hematologic (i.e. a “liquid”) malignancy and the latter a solid tumor, the two diseases share both clinical and biochemical characteristics. Both diseases exist predominantly in primary (de novo) forms, with only a small subset of each progressing from precursor disease states like the myelodysplastic syndromes or diffuse glioma. More importantly, the primary and secondary forms of each disease are characterized by common sets of mutations and gene expression abnormalities. The primary versions of AML and GB are characterized by aberrant RAS pathway, matrix metalloproteinase 9, and Bcl-2 expression, and their secondary counterparts share abnormalities in TP53, isocitrate dehydrogenase, ATRX, inhibitor of apoptosis proteins, and survivin that both influence the course of the diseases themselves and their progression from precursor disease. An understanding of these shared features is important, as it can be used to guide both the research about and treatment of each.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agios (2017) http://www.agios.com/pipeline-idh.php. Accessed January 5, 2017

  2. Amary MF, Bacsi K, Maggiani F et al (2011) IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 224(3):334–343. https://doi.org/10.1002/path.2913

    Article  CAS  PubMed  Google Scholar 

  3. Antar A, Kharfan-Dabaja MA, Mahfouz R, Bazarbachi A (2015) Sorafenib maintenance appears safe and improves clinical outcomes in FLT3-ITD acute myeloid leukemia after allogeneic hematopoietic cell transplantation. Clin Lymphoma Myeloma Leuk 15(5):298–302. https://doi.org/10.1016/j.clml.2014.12.005

    Article  PubMed  Google Scholar 

  4. Badar T, Patel KP, Thompson PA et al (2015) Detectable FLT3-ITD or RAS mutation at the time of transformation from MDS to AML predicts for very poor outcomes. Leuk Res 39(12):1367–1374. https://doi.org/10.1016/j.leukres.2015.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bake V, Roesler S, Eckhardt I, Belz K, Fulda S (2014) Synergistic interaction of Smac mimetic and IFNα to trigger apoptosis in acute myeloid leukemia cells. Cancer Lett 355(2):224–231. https://doi.org/10.1016/j.canlet.2014.08.040

    Article  CAS  PubMed  Google Scholar 

  6. Bakens MJaM, van Gestel YRBM, Bongers M et al (2015) Hospital of diagnosis and likelihood of surgical treatment for pancreatic cancer. Br J Surg 102(13):1670–1675. https://doi.org/10.1002/bjs.9951

    Article  CAS  PubMed  Google Scholar 

  7. Berghauser Pont LME, Spoor JKH, Venkatesan S et al (2014) The Bcl-2 inhibitor obatoclax overcomes resistance to histone deacetylase inhibitors SAHA and LBH589 as radiosensitizers in patient-derived glioblastoma stem-like cells. Genes Cancer 5(11–12):445–459. https://doi.org/10.18632/genesandcancer.42

    PubMed  PubMed Central  Google Scholar 

  8. Blanco-Calvo M, Concha Á, Figueroa A, Garrido F, Valladares-Ayerbes M (2015) Colorectal cancer classification and cell heterogeneity: a systems oncology approach. Int J Mol Sci 16(6):13610. https://doi.org/10.3390/ijms160613610

    Article  PubMed  PubMed Central  Google Scholar 

  9. Boddu P, Borthakur G (2017) Therapeutic targeting of isocitrate dehydrogenase mutant AML. Expert Opin Investig Drugs 26(5):525–530. https://doi.org/10.1080/13543784.2017.1317745

    Article  CAS  PubMed  Google Scholar 

  10. de Botton S (2015) Targeting isocitrate dehydrogenase IDH1 and IDH2 mutations Clinical results in advanced hematologic malignancies. http://tatcongress.org/wp-content/uploads/2015/03/O11.3-Stephane-de-Botton.pdf

  11. Brunner AM, Li S, Fathi AT et al (2016) Haematopoietic cell transplantation with and without sorafenib maintenance for patients with FLT3-ITD acute myeloid leukaemia in first complete remission. Br J Haematol. https://doi.org/10.1111/bjh.14260

    PubMed  PubMed Central  Google Scholar 

  12. Burnett-Hartman AN, Newcomb PA, Hutter CM et al (2014) Editor’s choice: variation in the association between colorectal cancer susceptibility loci and colorectal polyps by polyp type. Am J Epidemiol 180(2):223. https://doi.org/10.1093/aje/kwu114

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cai J, Chen J, Zhang W et al (2015) Loss of ATRX, associated with DNA methylation pattern of chromosome end, impacted biological behaviors of astrocytic tumors. Oncotarget 6(20):18105–18115

    Article  PubMed  PubMed Central  Google Scholar 

  14. Carter BZ, Mak DH, Schober WD et al (2010) Simultaneous activation of p53 and inhibition of XIAP enhance the activation of apoptosis signaling pathways in AML. Blood 115(2):306. https://doi.org/10.1182/blood-2009-03-212563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carter BZ, Mak PY, Chen Y et al (2016) Anti-apoptotic ARC protein confers chemoresistance by controlling leukemia-microenvironment interactions through a NFκB/IL1β signaling network. Oncotarget 7(15):20054–20067. https://doi.org/10.18632/oncotarget.7911

    Article  PubMed  PubMed Central  Google Scholar 

  16. Carter BZ, Mak PY, Mak DH et al (2014) Synergistic targeting of AML stem/progenitor cells with IAP antagonist birinapant and demethylating agents. JNCI J Natl Cancer Inst. https://doi.org/10.1093/jnci/djt440

    Google Scholar 

  17. Carter BZ, Qiu Y, Huang X et al (2012) Survivin is highly expressed in CD34 + 38—leukemic stem/progenitor cells and predicts poor clinical outcomes in AML. Blood 120(1):173. https://doi.org/10.1182/blood-2012-02-409888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carter BZ, Wang R-Y, Schober WD, Milella M, Chism D, Andreeff M (2003) Targeting survivin expression induces cell proliferation defect and subsequent cell death involving mitochondrial pathway in myeloid leukemic cells. Cell Cycle 2(5):488–493

    Article  CAS  PubMed  Google Scholar 

  19. Cerquozzi S, Tefferi A (2015) Blast transformation and fibrotic progression in polycythemia vera and essential thrombocythemia: a literature review of incidence and risk factors. Blood Cancer J 5(11):e366. https://doi.org/10.1038/bcj.2015.95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chakravarti A, Noll E, Black PM et al (2002) Quantitatively determined survivin expression levels are of prognostic value in human gliomas. J Clin Oncol 20(4):1063–1068. https://doi.org/10.1200/JCO.20.4.1063

    Article  CAS  PubMed  Google Scholar 

  21. Choe G, Park JK, Jouben-Steele L et al (2002) Active matrix metalloproteinase 9 expression is associated with primary glioblastoma subtype. Clin Cancer Res 8(9):2894–2901

    CAS  PubMed  Google Scholar 

  22. Crespo I, Vital AL, Gonzalez-Tablas M et al (2015) Molecular and genomic alterations in glioblastoma multiforme. Am J Pathol 185(7):1820–1833. https://doi.org/10.1016/j.ajpath.2015.02.023

    Article  CAS  PubMed  Google Scholar 

  23. Cruz RQ, Morais CM, Cardoso AM et al (2016) Enhancing glioblastoma cell sensitivity to chemotherapeutics: a strategy involving survivin gene silencing mediated by gemini surfactant-based complexes. Eur J Pharm Biopharm 104:7–18. https://doi.org/10.1016/j.ejpb.2016.04.014

    Article  CAS  PubMed  Google Scholar 

  24. Dang L, Jin S, Su SM (2010) IDH mutations in glioma and acute myeloid leukemia. Trends Mol Med 16(9):387–397. https://doi.org/10.1016/j.molmed.2010.07.002

    Article  CAS  PubMed  Google Scholar 

  25. Dimitrov L, Hong CS, Yang C, Zhuang Z, Heiss JD (2015) New developments in the pathogenesis and therapeutic targeting of the IDH1 mutation in glioma. Int J Med Sci 12(3):201. https://doi.org/10.7150/ijms.11047

    Article  PubMed  PubMed Central  Google Scholar 

  26. DiNardo CD, Ravandi F, Agresta S et al (2015) Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML. Am J Hematol 90(8):732–736. https://doi.org/10.1002/ajh.24072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dubecz A, Gall I, Solymosi N et al (2012) Temporal trends in long-term survival and cure rates in esophageal cancer: a SEER database analysis. J Thorac Oncol 7(2):443–447. https://doi.org/10.1097/JTO.0b013e3182397751

    Article  PubMed  Google Scholar 

  28. Elder DE (2010) Dysplastic naevi: an update. Histopathology 56(1):112–120. https://doi.org/10.1111/j.1365-2559.2009.03450.x

    Article  PubMed  Google Scholar 

  29. Essner R (2003) Surgical treatment of malignant melanoma. Surg Clin N Am 83(1):109–156. https://doi.org/10.1016/S0039-6109(02)00205-0

    Article  PubMed  Google Scholar 

  30. Fujii T, Khawaja MR, DiNardo CD, Atkins JT, Janku F. Targeting isocitrate dehydrogenase (IDH) in cancer. Discov Med. 21(117):373–380

  31. Fulda S (2015) Smac mimetics as IAP antagonists. Semin Cell Dev Biol 39:132–138. https://doi.org/10.1016/j.semcdb.2014.12.005

    Article  CAS  PubMed  Google Scholar 

  32. Fulda S, Vucic D (2012) Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov 11(2):109–124. https://doi.org/10.1038/nrd3627

    Article  CAS  PubMed  Google Scholar 

  33. Gianelli U, Fracchiolla NS, Cortelezzi A et al (2006) Survivin expression in “low-risk” and “high-risk” myelodysplastic syndromes. Ann Hematol 86(3):185–189. https://doi.org/10.1007/s00277-006-0215-0

    Article  PubMed  CAS  Google Scholar 

  34. Goldstein AM, Tucker MA (2013) Dysplastic nevi and melanoma. Cancer Epidemiol Biomark Prev 22(4):528. https://doi.org/10.1158/1055-9965.EPI-12-1346

    Article  Google Scholar 

  35. Gressot LV, Doucette T, Yang Y et al (2016) Analysis of the inhibitors of apoptosis identifies BIRC3 as a facilitator of malignant progression in glioma. Oncotarget. https://doi.org/10.18632/oncotarget.8657

    PubMed Central  Google Scholar 

  36. Grove CS, Vassiliou GS (2014) Acute myeloid leukaemia: a paradigm for the clonal evolution of cancer? Dis Model Mech 7(8):941–951. https://doi.org/10.1242/dmm.015974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Herbaux C, Duployez N, Badens C et al (2015) Incidence of ATRX mutations in myelodysplastic syndromes, the value of microcytosis. Am J Hematol 90(8):737–738. https://doi.org/10.1002/ajh.24073

    Article  CAS  PubMed  Google Scholar 

  38. How is acute myeloid leukemia classified? https://www.cancer.org/cancer/acute-myeloid-leukemia/detection-diagnosis-staging/how-classified.html. Accessed 4 June 2017

  39. IDH1 peptide vaccine for recurrent grade II glioma—full text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02193347. Accessed 27 Oct 2017

  40. Jädersten M, Saft L, Smith A et al (2011) TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol 29(15):1971–1979. https://doi.org/10.1200/JCO.2010.31.8576

    Article  PubMed  Google Scholar 

  41. Jaeckle KA, Decker PA, Ballman KV et al (2011) Transformation of low grade glioma and correlation with outcome: an NCCTG database analysis. J Neurooncol 104(1):253–259. https://doi.org/10.1007/s11060-010-0476-2

    Article  CAS  PubMed  Google Scholar 

  42. Jafarlou M, Baradaran B, Shanehbandi D et al (2016) siRNA-mediated inhibition of survivin gene enhances the anti-cancer effect of etoposide in U-937 acute myeloid leukemia cells. Cell Mol Biol 62(6):44–49

    CAS  PubMed  Google Scholar 

  43. Jiao Y, Killela PJ, Reitman ZJ et al (2012) Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget 3(7):709–722

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kadia TM, Jain P, Ravandi F et al (2016) TP53 mutations in newly diagnosed acute myeloid leukemia: clinicomolecular characteristics, response to therapy, and outcomes. Cancer. https://doi.org/10.1002/cncr.30203

    Google Scholar 

  45. Kampen KR, ter Elst A, de Bont ESJM (2012) Vascular endothelial growth factor signaling in acute myeloid leukemia. Cell Mol Life Sci 70(8):1307–1317. https://doi.org/10.1007/s00018-012-1085-3

    Article  PubMed  CAS  Google Scholar 

  46. Karakas T, Miething CC, Maurer U et al (2002) The coexpression of the apoptosis-related genes bcl-2 and wt1 in predicting survival in adult acute myeloid leukemia. Leukemia 16(5):846–854. https://doi.org/10.1038/sj.leu.2402434

    Article  CAS  PubMed  Google Scholar 

  47. Karami H, Baradaran B, Esfahani A et al (2013) siRNA-mediated silencing of survivin inhibits proliferation and enhances etoposide chemosensitivity in acute myeloid leukemia cells. Asian Pac J Cancer Prev 14(12):7719–7724

    Article  PubMed  Google Scholar 

  48. Karcher S, Steiner H-H, Ahmadi R et al (2006) Different angiogenic phenotypes in primary and secondary glioblastomas. Int J Cancer 118(9):2182–2189. https://doi.org/10.1002/ijc.21648

    Article  CAS  PubMed  Google Scholar 

  49. Karsy M, Neil JA, Guan J, Mark MA, Colman H, Jensen RL (2015) A practical review of prognostic correlations of molecular biomarkers in glioblastoma. Neurosurg Focus 38(3):E4. https://doi.org/10.3171/2015.1.FOCUS14755

    Article  PubMed  Google Scholar 

  50. Killela PJ, Pirozzi CJ, Reitman ZJ et al (2013) The genetic landscape of anaplastic astrocytoma. Oncotarget 5(6):1452–1457

    PubMed Central  Google Scholar 

  51. Kim Y-W, Koul D, Kim SH et al (2013) Identification of prognostic gene signatures of glioblastoma: a study based on TCGA data analysis. Neuro-Oncol 15(7):829. https://doi.org/10.1093/neuonc/not024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kipp BR, Voss JS, Kerr SE et al (2012) Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma. Hum Pathol 43(10):1552–1558. https://doi.org/10.1016/j.humpath.2011.12.007

    Article  CAS  PubMed  Google Scholar 

  53. Koga T, Hashimoto S, Sugio K et al (2002) Lung adenocarcinoma with bronchioloalveolar carcinoma component is frequently associated with foci of high-grade atypical adenomatous hyperplasia. Am J Clin Pathol 117(3):464–470. https://doi.org/10.1309/CHXA-3MH0-B7FD-JGUL

    Article  PubMed  Google Scholar 

  54. Konopleva M, Pollyea DA, Potluri J et al (2016) Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov 6(10):1106–1117. https://doi.org/10.1158/2159-8290.CD-16-0313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kraus JA, Wenghoefer M, Glesmann N et al (2001) TP53 gene mutations, nuclear p53 accumulation, expression of Waf/p21, Bcl-2, and CD95 (APO-1/Fas) proteins are not prognostic factors in de novo glioblastoma multiforme. J Neurooncol 52(3):263–272

    Article  CAS  PubMed  Google Scholar 

  56. Kulasekararaj AG, Smith AE, Mian SA et al (2013) TP53 mutations in myelodysplastic syndrome are strongly correlated with aberrations of chromosome 5, and correlate with adverse prognosis. Br J Haematol 160(5):660–672. https://doi.org/10.1111/bjh.12203

    Article  CAS  PubMed  Google Scholar 

  57. Kurotaki H, Tsushima Y, Nagai K, Yagihashi S (1999) Apoptosis, bcl-2 expression and p53 accumulation in myelodysplastic syndrome, myelodysplastic-syndrome-derived acute myelogenous leukemia and de novo acute myelogenous leukemia. Acta Haematol 102(3):115–123. https://doi.org/10.1159/000040984

    Article  Google Scholar 

  58. Lau D, Magill ST, Aghi MK (2014) Molecularly targeted therapies for recurrent glioblastoma: current and future targets. Neurosurg Focus 37(6):E15. https://doi.org/10.3171/2014.9.FOCUS14519

    Article  PubMed  PubMed Central  Google Scholar 

  59. Leroy B, Anderson M, Soussi T (2014) TP53 mutations in human cancer: database reassessment and prospects for the next decade. Hum Mutat 35(6):672–688. https://doi.org/10.1002/humu.22552

    Article  CAS  PubMed  Google Scholar 

  60. Li R, Li H, Yan W et al (2015) Genetic and clinical characteristics of primary and secondary glioblastoma is associated with differential molecular subtype distribution. Oncotarget 6(9):7318. https://doi.org/10.18632/oncotarget.3440

    PubMed  PubMed Central  Google Scholar 

  61. Lin L-I, Lin D-T, Chang C-J, Lee C-Y, Tang J-L, Tien H-F (2002) Marrow matrix metalloproteinases (MMPs) and tissue inhibitors of MMP in acute leukaemia: potential role of MMP-9 as a surrogate marker to monitor leukaemic status in patients with acute myelogenous leukaemia. Br J Haematol 117(4):835–841. https://doi.org/10.1046/j.1365-2141.2002.03510.x

    Article  CAS  PubMed  Google Scholar 

  62. Lindemann C, Marschall V, Weigert A, Klingebiel T, Fulda S (2015) Smac mimetic-induced upregulation of CCL2/MCP-1 triggers migration and invasion of glioblastoma cells and influences the tumor microenvironment in a paracrine manner. Neoplasia 17(6):481–489. https://doi.org/10.1016/j.neo.2015.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lu KV, Bergers G (2013) Mechanisms of evasive resistance to anti-VEGF therapy in glioblastoma. CNS Oncol 2(1):49. https://doi.org/10.2217/cns.12.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Malherbe JAJ, Fuller KA, Mirzai B et al (2016) Dysregulation of the intrinsic apoptotic pathway mediates megakaryocytic hyperplasia in myeloproliferative neoplasms. J Clin Pathol. https://doi.org/10.1136/jclinpath-2016-203625

    PubMed Central  Google Scholar 

  65. Marko NF, Weil RJ (2013) The molecular biology of WHO grade II gliomas. Neurosurg Focus 34(2):E1. https://doi.org/10.3171/2012.12.FOCUS12283

    Article  PubMed  Google Scholar 

  66. Metzeler KH, Herold T, Rothenberg-Thurley M et al (2016) Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood. https://doi.org/10.1182/blood-2016-01-693879

    PubMed  Google Scholar 

  67. Meyer M, Rübsamen D, Slany R et al (2009) Oncogenic RAS enables dna damage- and p53-dependent differentiation of acute myeloid leukemia cells in response to chemotherapy. PLoS ONE. https://doi.org/10.1371/journal.pone.0007768

    Google Scholar 

  68. Min K-W, Kim D-H, Do S-I et al (2016) High Ki67/BCL2 index is associated with worse outcome in early stage breast cancer. Postgrad Med J 92(1094):707–714. https://doi.org/10.1136/postgradmedj-2015-133531

    Article  PubMed  Google Scholar 

  69. Montero J, Stephansky J, Cai T et al (2016) Blastic plasmacytoid dendritic cell neoplasm is dependent on BCL-2 and sensitive to venetoclax. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-16-0999

    PubMed  PubMed Central  Google Scholar 

  70. Munoz JL, Rodriguez-Cruz V, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P (2014) Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor-mediated induction of connexin 43. Cell Death Dis 5(3):e1145. https://doi.org/10.1038/cddis.2014.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Network TCGAR. (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368(22):2059–2074. https://doi.org/10.1056/NEJMoa1301689

    Article  CAS  Google Scholar 

  72. Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170(5):1445–1453. https://doi.org/10.2353/ajpath.2007.070011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ohgaki H, Kleihues P (2011) Genetic profile of astrocytic and oligodendroglial gliomas. Brain Tumor Pathol 28(3):177–183. https://doi.org/10.1007/s10014-011-0029-1

    Article  CAS  PubMed  Google Scholar 

  74. Ohno M, Narita Y, Miyakita Y et al (2012) Histopathological malignant progression of grade II and III gliomas correlated with IDH1/2. Brain Tumor Pathol 29(4):183–191. https://doi.org/10.1007/s10014-012-0113-1

    Article  CAS  PubMed  Google Scholar 

  75. Pareja F, Macleod D, Shu C et al (2014) PI3K and Bcl-2 inhibition primes glioblastoma cells to apoptosis through downregulation of Mcl-1 and Phospho-BAD. Mol Cancer Res MCR 12(7):987–1001. https://doi.org/10.1158/1541-7786.MCR-13-0650

    Article  CAS  PubMed  Google Scholar 

  76. Park CM, Goo JM, Lee HJ et al (2006) CT findings of atypical adenomatous hyperplasia in the lung. Korean J Radiol 7(2):80–86. https://doi.org/10.3348/kjr.2006.7.2.80

    Article  PubMed  PubMed Central  Google Scholar 

  77. Patnaik MM, Hanson CA, Hodnefield JM et al (2012) Differential prognostic effect of IDH1 versus IDH2 mutations in myelodysplastic syndromes: a Mayo Clinic Study of 277 patients. Leukemia 26(1):101–105. https://doi.org/10.1038/leu.2011.298

    Article  CAS  PubMed  Google Scholar 

  78. Pemmaraju et al (2016) Paper: results for phase II Clinical Trial of LCL161, a SMAC mimetic, in patients with primary myelofibrosis (PMF), post-polycythemia vera myelofibrosis (post-PV MF) or post-essential thrombocytosis myelofibrosis (post-ET MF). https://ash.confex.com/ash/2016/webprogram/Paper94040.html. Accessed 1 Apr 2017

  79. Pemmaraju N, Kantarjian H, Ravandi F et al (2016) Patient characteristics and outcomes in adolescents and young adults (AYA) with acute myeloid leukemia (AML). Clin Lymphoma Myeloma Leuk 16(4):213–222.e2. https://doi.org/10.1016/j.clml.2015.12.010

    Article  PubMed  PubMed Central  Google Scholar 

  80. Phase I Trial of IDH1 Peptide vaccine in IDH1R132H-mutated grade III–IV gliomas—full text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02454634. Accessed 27 Oct 2017

  81. Phase II Study of combined temozolomide and SGT-53 for treatment of recurrent glioblastoma—full text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02340156. Accessed 26 Oct 2017

  82. Prados MD, Byron SA, Tran NL et al (2015) Toward precision medicine in glioblastoma: the promise and the challenges. Neuro-Oncol 17(8):1051–1063. https://doi.org/10.1093/neuonc/nov031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Qiu B, Wang Y, Tao J, Wang Y (2012) Expression and correlation of Bcl-2 with pathological grades in human glioma stem cells. Oncol Rep 28(1):155–160. https://doi.org/10.3892/or.2012.1800

    PubMed  Google Scholar 

  84. Rampal R, Ahn J, Abdel-Wahab O et al (2014) Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms. Proc Natl Acad Sci USA 111(50):E5401–E5410. https://doi.org/10.1073/pnas.1407792111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rampal R, Mascarenhas J (2014) Pathogenesis and management of acute myeloid leukemia that has evolved from a myeloproliferative neoplasm. Curr Opin Hematol 21(2):65–71. https://doi.org/10.1097/MOH.0000000000000017

    Article  CAS  PubMed  Google Scholar 

  86. Reitman ZJ, Jin G, Karoly ED et al (2011) Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc Natl Acad Sci USA 108(8):3270–3275. https://doi.org/10.1073/pnas.1019393108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Riedel M, Struve N, Müller-Goebel J et al (2016) Sorafenib inhibits cell growth but fails to enhance radio- and chemosensitivity of glioblastoma cell lines. Oncotarget. https://doi.org/10.18632/oncotarget.11328

    PubMed  Google Scholar 

  88. Ries C, Loher F, Zang C, Ismair MG, Petrides PE (1999) Matrix metalloproteinase production by bone marrow mononuclear cells from normal individuals and patients with acute and chronic myeloid leukemia or myelodysplastic syndromes. Clin Cancer Res 5(5):1115–1124

    CAS  PubMed  Google Scholar 

  89. Sachdeva MUS, Ahluwalia J, Das R, Varma N, Garewal G (2006) Role of FAB classification of acute leukemias in era of immunophenotyping. Indian J Pathol Microbiol 49(4):524–527

    PubMed  Google Scholar 

  90. Saleem M, Qadir MI, Perveen N, Ahmad B, Saleem U, Irshad T (2013) Inhibitors of apoptotic proteins: new targets for anticancer therapy. Chem Biol Drug Des 82(3):243–251. https://doi.org/10.1111/cbdd.12176

    Article  CAS  PubMed  Google Scholar 

  91. Ständer M, Peraud A, Leroch B, Kreth FW (2004) Prognostic impact of TP53 mutation status for adult patients with supratentorial World Health Organization Grade II astrocytoma or oligoastrocytoma. Cancer 101(5):1028–1035. https://doi.org/10.1002/cncr.20432

    Article  PubMed  CAS  Google Scholar 

  92. Steensma DP, Gibbons RJ, Higgs DR (2005) Acquired alpha-thalassemia in association with myelodysplastic syndrome and other hematologic malignancies. Blood 105(2):443–452. https://doi.org/10.1182/blood-2004-07-2792

    Article  CAS  PubMed  Google Scholar 

  93. Steensma DP, Higgs DR, Fisher CA, Gibbons RJ (2004) Acquired somatic ATRX mutations in myelodysplastic syndrome associated with alpha thalassemia (ATMDS) convey a more severe hematologic phenotype than germline ATRX mutations. Blood 103(6):2019–2026. https://doi.org/10.1182/blood-2003-09-3360

    Article  CAS  PubMed  Google Scholar 

  94. Steensma DP, Viprakasit V, Hendrick A et al (2004) Deletion of the alpha-globin gene cluster as a cause of acquired alpha-thalassemia in myelodysplastic syndrome. Blood 103(4):1518–1520. https://doi.org/10.1182/blood-2003-09-3222

    Article  CAS  PubMed  Google Scholar 

  95. Stein EM (2015) IDH2 inhibition in AML: finally progress? Best Pract Res Clin Haematol 28(2–3):112–115. https://doi.org/10.1016/j.beha.2015.10.016

    Article  PubMed  Google Scholar 

  96. Stein EM, DiNardo CD, Pollyea DA et al (2017) Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 130(6):722–731. https://doi.org/10.1182/blood-2017-04-779405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Steinwascher S, Nugues A-L, Schoeneberger H, Fulda S (2015) Identification of a novel synergistic induction of cell death by Smac mimetic and HDAC inhibitors in acute myeloid leukemia cells. Cancer Lett 366(1):32–43. https://doi.org/10.1016/j.canlet.2015.05.020

    Article  CAS  PubMed  Google Scholar 

  98. Stoian M, State N, Rusu E et al (2014) Malignancy and mortality of colorectal polyps. Rev Medico-Chir Soc Medici Ş̧i Nat Din Iaş̧i 118(2):399–406

    Google Scholar 

  99. Study of orally administered AG-221 in subjects with advanced solid tumors, including glioma, and with angioimmunoblastic T-cell lymphoma, with an IDH2 mutation subjects with advanced solid tumors, including glioma, and with angioimmunoblastic T-cell lymphoma, with an IDH2 mutation—full text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02273739. Accessed 27 Oct 2017

  100. Study of orally administered AG-881 in patients with advanced hematologic malignancies with an IDH1 and/or IDH2 mutation—full text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02492737. Accessed 27 Oct 2017

  101. Study of orally administered AG-881 in patients with advanced solid tumors, including gliomas, with an IDH1 and/or IDH2 mutation—full text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02481154. Accessed 27 Oct 2017

  102. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  103. Sun J-Z, Lu Y, Xu Y et al (2012) Epidermal growth factor receptor expression in acute myelogenous leukaemia is associated with clinical prognosis. Hematol Oncol 30(2):89–97. https://doi.org/10.1002/hon.1002

    Article  CAS  PubMed  Google Scholar 

  104. Takahashi K, Patel K, Bueso-Ramos C et al (2016) Clinical implications of TP53 mutations in myelodysplastic syndromes treated with hypomethylating agents. Oncotarget 7(12):14172. https://doi.org/10.18632/oncotarget.7290

    Article  PubMed  PubMed Central  Google Scholar 

  105. Tchoghandjian A, Jennewein C, Eckhardt I, Momma S, Figarella-Branger D, Fulda S (2014) Smac mimetic promotes glioblastoma cancer stem-like cell differentiation by activating NF-κB. Cell Death Differ 21(5):735–747. https://doi.org/10.1038/cdd.2013.200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Thakral G, Vierkoetter K, Namiki S et al (2016) AML multi-gene panel testing: a review and comparison of two gene panels. Pathol Res Pract 212(5):372–380. https://doi.org/10.1016/j.prp.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  107. Trial of IDH305 in IDH1 mutant grade II or III glioma—full text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02977689. Accessed 26 Oct 2017

  108. Tucker MA (2009) Melanoma epidemiology. Hematol Oncol Clin N Am 23(3):383. https://doi.org/10.1016/j.hoc.2009.03.010

    Article  Google Scholar 

  109. Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA (2011) New mutations and pathogenesis of myeloproliferative neoplasms. Blood 118(7):1723–1735. https://doi.org/10.1182/blood-2011-02-292102

    Article  CAS  PubMed  Google Scholar 

  110. Verhaak RGW, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110. https://doi.org/10.1016/j.ccr.2009.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wagner L, Marschall V, Karl S et al (2013) Smac mimetic sensitizes glioblastoma cells to temozolomide-induced apoptosis in a RIP1- and NF-κB-dependent manner. Oncogene 32(8):988–997. https://doi.org/10.1038/onc.2012.108

    Article  CAS  PubMed  Google Scholar 

  112. Wang X, Chen J, Liu J, You C, Liu Y, Mao Q (2013) Gain of function of mutant TP53 in glioblastoma: prognosis and response to temozolomide. Ann Surg Oncol 21(4):1337–1344. https://doi.org/10.1245/s10434-013-3380-0

    Article  PubMed  Google Scholar 

  113. Xie D, Zeng YX, Wang HJ et al (2006) Expression of cytoplasmic and nuclear survivin in primary and secondary human glioblastoma. Br J Cancer 94(1):108–114. https://doi.org/10.1038/sj.bjc.6602904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yamamoto K, Abe S, Nakagawa Y et al (2004) Expression of IAP family proteins in myelodysplastic syndromes transforming to overt leukemia. Leuk Res 28(11):1203–1211. https://doi.org/10.1016/j.leukres.2004.03.020

    Article  CAS  PubMed  Google Scholar 

  115. Yan W, Zhang W, Sun L et al (2011) Identification of MMP-9 specific microRNA expression profile as potential targets of anti-invasion therapy in glioblastoma multiforme. Brain Res 1411:108–115. https://doi.org/10.1016/j.brainres.2011.07.002

    Article  CAS  PubMed  Google Scholar 

  116. Zeichner SB, Arellano ML (2015) Secondary adult acute myeloid leukemia: a review of our evolving understanding of a complex disease process. Curr Treat Options Oncol 16(8):1–15. https://doi.org/10.1007/s11864-015-0355-3

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported in part by the MD Anderson Cancer Center Support Grant P30 CA016672, by National Institute of Neurological Disorders and Stroke (NINDS) Grant R01 NS094615-01A1 (Rao), and by philanthropic support from the SagerStrong Foundation (NP).

Author information

Authors and Affiliations

Authors

Contributions

EG, BZC, GR, NP all wrote and edited the manuscript. All authors provided critical analysis and approved the final manuscript.

Corresponding authors

Correspondence to Ganesh Rao or Naveen Pemmaraju.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose with regards to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goethe, E., Carter, B.Z., Rao, G. et al. Glioblastoma and acute myeloid leukemia: malignancies with striking similarities. J Neurooncol 136, 223–231 (2018). https://doi.org/10.1007/s11060-017-2676-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2676-5

Keywords

Navigation