Skip to main content

Advertisement

Log in

Bevacizumab-related toxicities in the National Cancer Institute malignant glioma trial cohort

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Bevacizumab is an antiangiogenic agent approved for recurrent glioblastoma due to high response rates. Prior reviews focused on severe or cardiovascular bevacizumab toxicities. We performed a comprehensive review of toxicities experienced among 210 patients enrolled in 3 phase II bevacizumab trials for recurrent malignant gliomas at the National Cancer Institute. No bevacizumab toxicities were experienced by 20 % patients, 40.2 % on monotherapy versus ≤9.5 % on combination therapy. Hypertension and proteinuria occurred in ~25 %. Fatigue, hypophosphatemia, aspartate aminotransferase elevation, rashes were common. Low grade headache, hoarseness, myalgias/arthralgias, liver enzyme elevation, azotemia and electrolyte abnormalities were noted. Rare severe toxicities, including thrombosis, hemorrhage, wound complications and colonic perforations, occurred at rates seen in other diseases. Leukopenia and neutropenia occurred solely with combination therapy, while thrombocytopenia occurred in 12.5 % on bevacizumab monotherapy. Thrombocytopenia was generally mild, but severe in (1.4 %) and increased in frequency with prolonged or combination therapy. Bevacizumab-related deaths occurred in 4 (1.9 %) patients, including brain ischemia (n = 1) and sudden unexplained deaths (n = 2). Prior hypertension increased the odds of hypertension by ≥3.4-fold (p < 0.001) and grade 3+ hypertension by ≥11.2 (p < 0.001). Prior hypertension increased the odds of hypophosphatemia by 2.4-fold (p = 0.011), but failed to predict proteinuria or azotemia. Age did not greatly impact toxicity. Hypertension, proteinuria and hypophosphatemia often occurred concurrently, more frequently and severely with prolonged use. Our study shows bevacizumab monotherapy is well tolerated, but toxicity increases with combination therapy. Balancing the risks and benefits of bevacizumab requires understanding the spectrum of bevacizumab toxicities and predisposing factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-Oncology 14(Suppl 5):v1–v49

    Article  PubMed  PubMed Central  Google Scholar 

  2. Louis D, Ohgaki H, Wiestler O et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

    Article  PubMed  PubMed Central  Google Scholar 

  3. Frankel SA, German WJ (1958) Glioblastoma multiforme. J Neurosurg 15(5):489–503

    Article  PubMed  CAS  Google Scholar 

  4. Pichlmeier U, Bink A, Schackert G, Stummer W (2008) Resection and survival in glioblastoma multiforme: an RTOG recursive partitioning analysis of ALA study patients. Neuro-Oncology 10(6):1025–1034

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wong ET, Hess KR, Gleason MJ et al (1999) Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J Clin Oncol 17(8):2572

    PubMed  CAS  Google Scholar 

  6. Laperriere N, Zuraw L, Cairncross G (2002) Radiotherapy for newly diagnosed malignant glioma in adults: a systematic review. Radiother Oncol 64(3):259–273

    Article  PubMed  Google Scholar 

  7. Scott CB, Scarantino C, Urtasun R et al (1998) Validation and predictive power of radiation therapy oncology group (RTOG) recursive partitioning analysis classes for malignant glioma patients: a report using RTOG 90-06. Int J Radiat Oncol Biol Phys 40(1):51–55

    Article  PubMed  CAS  Google Scholar 

  8. Tsao MN, Mehta MP, Whelan TJ et al (2005) The American Society for Therapeutic Radiology and Oncology (ASTRO) evidence-based review of the role of radiosurgery for malignant glioma. Int J Radiat Oncol Biol Phys 63(1):47–55

    Article  PubMed  Google Scholar 

  9. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Article  PubMed  CAS  Google Scholar 

  10. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507

    Article  PubMed  CAS  Google Scholar 

  11. Maxwell M, Naber SP, Wolfe HJ et al (1991) Expression of angiogenic growth factor genes in primary human astrocytomas may contribute to their growth and progression. Cancer Res 51(4):1345–1351

    PubMed  CAS  Google Scholar 

  12. Millauer B, Shawver LK, Plate KH, Risaui W, Ullrich A (1994) Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367(6463):576–579

    Article  PubMed  CAS  Google Scholar 

  13. Stefanik DF, Fellows WK, Rizkalla LR et al (2001) Monoclonal antibodies to vascular endothelial growth factor (VEGF) and the VEGF receptor, FLT-1, inhibit the growth of C6 glioma in a mouse xenograft. J Neurooncol 55(2):91–100

    Article  PubMed  CAS  Google Scholar 

  14. Plate KH, Breier G, Weich HA, Risau W (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359(6398):845–848

    Article  PubMed  CAS  Google Scholar 

  15. Presta LG, Chen H, O’Connor SJ et al (1997) Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 57(20):4593–4599

    PubMed  CAS  Google Scholar 

  16. Kabbinavar FF, Hambleton J, Mass RD, Hurwitz HI, Bergsland E, Sarkar S (2005) Combined analysis of efficacy: the addition of bevacizumab to fluorouracil/leucovorin improves survival for patients with metastatic colorectal cancer. J Clin Oncol 23(16):3706–3712

    Article  PubMed  CAS  Google Scholar 

  17. Kerr C (2005) Bevacizumab and chemotherapy improves survival in NSCLC. Lancet Oncol 6(5):266

    Article  PubMed  Google Scholar 

  18. Escudier B, Pluzanska A, Koralewski P et al (2007) Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370(9605):2103–2111

    Article  PubMed  Google Scholar 

  19. Vredenburgh JJ, Desjardins A, Herndon JE et al (2007) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25(30):4722–4729

    Article  PubMed  CAS  Google Scholar 

  20. Kreisl TN, Kim L, Moore K et al (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27(5):740–745

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Kreisl TN, Zhang W, Odia Y et al (2011) A phase II trial of single-agent bevacizumab in patients with recurrent anaplastic glioma. Neuro-Oncology 13(10):1143–1150

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Chen HX, Cleck JN (2009) Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol 6(8):465–477

    Article  PubMed  CAS  Google Scholar 

  23. Gressett SM, Shah SR (2009) Intricacies of bevacizumab-induced toxicities and their management. Ann Pharmacother 43(3):490–501

    Article  PubMed  CAS  Google Scholar 

  24. Vaklavas C, Lenihan D, Kurzrock R, Tsimberidou AM (2010) Anti-vascular endothelial growth factor therapies and cardiovascular toxicity: what are the important clinical markers to target? Oncol 15(2):130–141

    Article  CAS  Google Scholar 

  25. Chinot OL, de La Motte Rouge T, Moore N et al (2011) AVAglio: phase 3 trial of bevacizumab plus temozolomide and radiotherapy in newly diagnosed glioblastoma multiforme. Adv Ther 28(4):334–340

    Article  PubMed  CAS  Google Scholar 

  26. Chinot OL, Wick W, Mason W et al (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370(8):709–722

    Article  PubMed  CAS  Google Scholar 

  27. Gilbert MR, Dignam JJ, Armstrong TS et al (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370(8):699–708

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Amit L, Ben-Aharon I, Vidal L, Leibovici L, Stemmer S (2013) The impact of bevacizumab (Avastin) on survival in metastatic solid tumors—a meta-analysis and systematic review. PLoS ONE 8(1):e51780

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Elice F, Rodeghiero F, Falanga A, Rickles FR (2009) Thrombosis associated with angiogenesis inhibitors. Best Pract Res Clin Haematol 22(1):115–128

    Article  PubMed  CAS  Google Scholar 

  30. Hutson TE, Figlin RA, Kuhn JG, Motzer RJ (2008) Targeted therapies for metastatic renal cell carcinoma: an overview of toxicity and dosing strategies. Oncol 13(10):1084–1096

    Article  CAS  Google Scholar 

  31. Laskin J, Crinò L, Felip E et al (2012) Safety and efficacy of first-line bevacizumab plus chemotherapy in elderly patients with advanced or recurrent nonsquamous non-small cell lung cancer: safety of avastin in lung trial (MO19390). J Thorac Oncol 7(1):203–211. doi:10.1097/JTO.0b013e3182370e02

    Article  PubMed  CAS  Google Scholar 

  32. Peters K, Coyle T, Vredenburgh J, Desjardins A, Friedman H, Reardon D (2011) Ulceration of Striae distensae in high-grade glioma patients on concurrent systemic corticosteroid and bevacizumab therapy. J Neurooncol 101(1):155–159

    Article  PubMed  CAS  Google Scholar 

  33. Ricciardi S, Tomao S, de Marinis F (2009) Toxicity of targeted therapy in non–small-cell lung cancer management. Clin Lung Cancer 10(1):28–35

    Article  PubMed  CAS  Google Scholar 

  34. Schuster C, Eikesdal HP, Puntervoll H et al (2012) Clinical efficacy and safety of bevacizumab monotherapy in patients with metastatic melanoma: predictive importance of induced early hypertension. PLoS ONE 7(6):e38364

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Shepard DR, Garcia JA (2009) Toxicity associated with the long-term use of targeted therapies in patients with advanced renal cell carcinoma. Expert Rev Anticancer Ther 9(6):795–805

    Article  PubMed  CAS  Google Scholar 

  36. Thomssen C, Pierga JY, Pritchard KI et al (2012) First-line bevacizumab-containing therapy for triple-negative breast cancer: analysis of 585 patients treated in the ATHENA study. Oncology 82(4):218–227

    Article  PubMed  CAS  Google Scholar 

  37. Girardi F, Franceschi E, Brandes AA (2010) Cardiovascular safety of VEGF-targeting therapies: current evidence and handling strategies. Oncol 15(7):683–694

    Article  CAS  Google Scholar 

  38. Fraum T, Kreisl T, Sul J, Fine H, Iwamoto F (2011) Ischemic stroke and intracranial hemorrhage in glioma patients on antiangiogenic therapy. J Neurooncol 105(2):281–289

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Wheeler H, Black J, Webb S, Shen H (2012) Dehiscence of corticosteroid-induced abdominal striae in a 14-year-old boy treated with bevacizumab for recurrent glioblastoma. J Child Neurol 27(7):927–929

    Article  PubMed  Google Scholar 

  40. Vredenburgh JJ, Desjardins A, Herndon JE et al (2007) Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13(4):1253–1259

    Article  PubMed  CAS  Google Scholar 

  41. Gururangan S, Chi SN, Young Poussaint T et al (2010) Lack of efficacy of bevacizumab plus irinotecan in children with recurrent malignant glioma and diffuse brainstem glioma: a pediatric brain tumor consortium study. J Clin Oncol 28(18):3069–3075

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Liu AK, Macy ME, Foreman NK (2009) Bevacizumab as therapy for radiation necrosis in four children with pontine gliomas. Int J Radiat Oncol Biol Phys 75(4):1148–1154

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The National Cancer Institute (NCI) Intramural Research Program provided grant funding for this project and the NCI phase II trial of bevacizumab as single agent [NCT00271609]. The NCI phase II trial of combination with enzastaurin (LY317615) and bevacizumab [NCT00586508] was sponsored by Eli Lilly and funded by the NCI via a CRADA. The NCI phase II trial of tandutinib (MLN518) and bevacizumab [NCT00667394] was sponsored and funded by Millennium Pharmaceuticals via a Clinical Trial Agreement (CTA). Tetiana Wiggington, Leslie Moses, Laurie Rosenblatt, Julie Peretti, Tracy Cropper, and Maria Gonzalez provided administrative assistance with medical records and database management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yazmin Odia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 708 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odia, Y., Shih, J.H., Kreisl, T.N. et al. Bevacizumab-related toxicities in the National Cancer Institute malignant glioma trial cohort. J Neurooncol 120, 431–440 (2014). https://doi.org/10.1007/s11060-014-1571-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1571-6

Keywords

Navigation