Skip to main content
Log in

A proposed methodology for the determination of seed sources for tree native species based on environmental variables: the case of Quillaja saponaria Mol

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

There is an increasing interest in planting native tree species for commercialization and restoration purposes. However, the seed provenance zones of plant material to complete these activities successfully are not always available. This study aimed to develop a methodology that delineates seed zones based on provenances and using climatic and topographic variables. We created a database with spatial units throughout the natural distribution of Quillaja saponaria Mol. (30º to 38ºS), containing climatic and topographic information and a relative abundance of the species. First, a principal component analysis (PCA) was performed to synthesize data, with the first three components explaining 89% of the total variance. Then, a non-hierarchical cluster analysis was performed to define homogenous groups, which was defined through linear discriminant analysis. Finally, an ordinal logistic regression (OLR) was performed using the abundance value as response and the environmental variables as predictors, obtaining a maximum of 40% of success in the prediction of abundance. Even though abundance was a complex response to be predicted in the case of Q. saponaria, the proposed method to delineate seed sources showed geographical coherence. The proposed methodology is easily replicable to other species using free databases and computing tools and allows a preliminary estimation of seed transfer zones for Q. saponaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdi H, Williams L (2010) Principal component analysis. Wiley Interdisciplinary Reviews: Comput Stat 2(4):433–459

    Article  Google Scholar 

  • Alía R, García J, Iglesias S, Mancha J, De Miguel J, Nicolás J, Pérez F, Sánchez D (2009) Regiones de procedencia de especies forestales en España. Gobierno de España, Spain

    Google Scholar 

  • Antúnez P, Hernández-Díaz J, Wehenkel C, Clark-Tapia R (2017) Generalized Models: an application to identify environmental variables that significantly affect the abundance of three Tree Species. Forests 8(3):59. doi:https://doi.org/10.3390/f8030059

    Article  Google Scholar 

  • Antúnez P (2021) Main environmental variables influencing the abundance of plant species under risk category. J For Res. doi.https://doi.org/10.1007/s11676-021-01425-6

    Article  Google Scholar 

  • Avolio M, Forrestel E, Chang C, La Pierre K, Burghardt K, Smith M (2019) Demystifying dominance species. New Phytol 223(3):1106–1126

    Article  PubMed  Google Scholar 

  • Becerra P (2016) Relationship between climate and geographical variation of local woody species richness within the Mediterranean-type region of Chile. Rev Chil Hist Nat 89:1–11

    Article  Google Scholar 

  • Bischoff A, Steinger T, Müller-Schärer H (2010) The importance of plant provenance and genotypic diversity of seed material used for ecological restoration. Rest Ecol 18:338–348. https://doi.org/10.1111/j.1526-100X.2008.00454.x

    Article  Google Scholar 

  • Bonn A, Gaston K (2005) Capturing biodiversity: selecting priority areas for conservation using different criteria. Biodivers Conserv 14:1083–1100

    Article  Google Scholar 

  • Bower AD, Clair J, Erickson V (2014) Generalized provisional seed zones for native plants. Ecol Appl 24(5):913–919

    Article  PubMed  Google Scholar 

  • Breed MF, Stead MG, Ottewell KM, Gardner MG, Lowe AJ (2013) Which provenance and where? Seed sourcing strategies for revegetation in a changing environment. Conserv Gen 14(1):1–10

    Article  Google Scholar 

  • Brown JH, Mehlman DW, Stevens GC (1995) Spatial variation in abundance. Ecol 76(7):2028–2043

    Article  Google Scholar 

  • Camerano P, Belletti P, Ferrazzini D, Pignatti G (2011) Definizione di regioni di provenienza. A che punto siamo?. Sherwood, Foreste Ed Alberi Oggi 17(179): 23–27

  • CONAF CONAMA, BIRF (1999) Catastro y evaluación de los recursos vegetacionales nativos de Chile. Chilean Forest Service, Santiago, Chile

    Google Scholar 

  • Coudun C, Géogut J (2007) Quantitative prediction of the distribution and abundance of Vaccinium myrtillus with climatic and edaphic factors. J Veg Sci 18:517–524

    Article  Google Scholar 

  • Crawley M (2007) The R Book. John Wiley & Sons, Imperial College London, UK

    Book  Google Scholar 

  • Crow TM, Albeke SE, Buerkle CA, Hufford KM (2018) Provisional methods to guide species-specific seed transfer in ecological restoration. Ecosphere 9:e02059

    Article  Google Scholar 

  • Cruz-Cárdenas G, López-Mata L, Villaseñor JL, Ortiz E (2014) Potential species distribution modeling and the use of principal components analysis as predictor as variables. Rev Mex Biodivers 85:189–199

    Article  Google Scholar 

  • De la Barrera F, Barraza F, Favier P, Ruiz V, Quense J (2018) Megafires in Chile 2017: monitoring multiscale environmental impacts of burned ecosystems. Sci Total Env 37:1526–1536

    Article  Google Scholar 

  • Del Fierro P, Pancel L (1988) Experiencia silvicultural del bosque nativo de Chile: Recopilación de antecedentes para 57 especies arbóreas y evaluación de prácticas silviculturales. Corporación Nacional Forestal, CONAF. Santiago Chile

  • Echeverría C, Coomes D, Salas J, Rey-Benayas JM, Lara A, Newton A (2006) Rapid deforestation and fragmentation of chilean temperate forests. Biol Conserv 130(4):481–494

    Article  Google Scholar 

  • Everitt B, Hothorn T (2011) An introduction to Applied Multivariate Analysis with R. Use R! Series. Springer Science & Business Media, New York, USA

    Book  Google Scholar 

  • Everitt B, Landau S, Leese M, Stahl D (2011) Cluster analysis. Wiley & Sons, New York, USA

    Book  Google Scholar 

  • García D, Zamora R, Gómez J, Jordano P, Hódar J (2000) Geographical variation in seed production, predation and abortion in Juniperus communis throughout its range in Europe. J Ecol 88:436–446

    Article  Google Scholar 

  • Germishuizen I, Gardner RA (2015) A tool for identifying potential Eucalyptus nitens seed orchard sites based on climate and topography. South For 77(2):123–130

    Article  Google Scholar 

  • Gottfried M, Pauili H, Reiter K, Grabherr G (1999) A fine-scaled predictive model for changes in species distribution patterns of high mountain plants induced by climate warming. Divers distrib 5:241–251

    Article  Google Scholar 

  • Guisan A, Harrell F (2000) Ordinal response regression models in ecology. J Veg Sci 11:617–636

    Article  Google Scholar 

  • Hamann A, Gylander T, Chen P (2011) Developing seed zones and transfer guidelines with multivariate regression trees. Tree Gen Genomes 7:399–408

    Article  Google Scholar 

  • Havens K, Vitt P, Still S, Kramer AT, Fant JB, Schatz K (2015) Seed sourcing for restoration in an era of climate change. Nat Areas J 35(1):122–133. https://www.jstor.org/stable/90008730

    Article  Google Scholar 

  • Hijmans R, Cameron S, Parra J, Jones P, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • INFOR (2000) Monografía de Quillay (Quillaja Saponaria). LOM ediciones Ltda, Santiago

    Google Scholar 

  • James FC, Mcculloch CE (1990) Multivariate analysis in ecology and systematics: panacea or Pandora’s box?.Annual Rev Ecol Systematics:129–166

  • Janzekovic F, Novak T (2012) PCA – A powerful method for analyze ecological niches. In: Sanguansant P (ed) Principal Components Analysis: multidisciplinary applications”. InTech, pp 127–142

  • Johnson R, Wichern D (1988) Applied Multivariate Statistical Analysis. Prentice Hall, New Yersey, USA

    Google Scholar 

  • Jolliffe IT (2002) Principal Component Analysis. Second Edition. Springer, New York, USA

  • Korhonen L, Korhonen K, Rautiainen M, Stenberg P (2006) Estimation of forest canopy cover: a comparison of field measurement techniques. Silva Fenn 40(4):577–588

    Article  Google Scholar 

  • Leimu R, Fischer M (2008) A meta-analysis of local adaptation in plants. PLoS ONE 3(12):e4010

    Article  PubMed  PubMed Central  Google Scholar 

  • Listl D, Poschlod P, Reisch C (2017) Do seed transfer zones for ecological resotoration reflect the spatial genetic variation of the common grassland species Lathyrus pratensis? Rest Ecol 26:667–676

    Article  Google Scholar 

  • Martínez-Antúnez P, Wehenkel C, Hernández-Díaz JC, González-Elizondo MS, Corral-Rivas JJ, Pinedo-Alvarez A (2013) Effect of climate and physiography on the distribution of trees and shrubs species in northwest Mexico. Pol J Ecol 61:295–307

    Google Scholar 

  • Massatti R, Shriver RK, Winkler DE, Richardson BA, Bradford JB (2020) Assessment of population genetics and climatic variability can refine climate-informed seed transfer guidelines. Rest Ecol 28:485–493

    Article  Google Scholar 

  • Moghimipour E, Sadaghi-Nejad B, Handali S, Ameri A, Romezani Z, Azemi M (2014) In vitro screening of anti-candida activity of sapopins extracted from Glycyrrhiza glabra and Quillaja saponaria. Asian J Pharm Clinic Res 7(1):160–162

    Google Scholar 

  • Peres-Neto P, Jackson D, Somers K (2003) Giving meaningful interpretation to ordination axes: assessing loading significance in principal component analysis. Ecol 84(9):2347–2363

    Article  Google Scholar 

  • Potter KM, Hargrove WW (2012) Determining suitable locations for seed transfer under climate change: a global quantitative method. New For 43(5):581–599

    Article  Google Scholar 

  • Pyke C, Richard C, Aguilar S, Lao S (2001) Floristic composition across a climatic gradient in a neotropical lowland forest. J Veg Sci 12:553–566

    Article  Google Scholar 

  • Ragupathi G, Gardner J, Livingston P, Gin D (2011) Natural and synthetic saponin adjuvant QS-21 for vaccines against cancer. Expert Rev Vaccines 10(4):463–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman Au, Khan SM, Ahmad Z, Alamri S, Hashem M, Ilyas M, Aksoy A, Dülgeroğlu C, Shahab Ali GK (2021) Impact of multiple environmental factors on species abundance in various forest layers using an integrative modeling approach. Global Ecol Conserv 29:e01712

    Article  Google Scholar 

  • Randin C, Jaccard H, Vittoz P, Yoccoz N, Guisan A (2009) Land use improves spatial predictions of mountain plant abundance but not presence-absence. J Veg Sci 20:996–1008

    Article  Google Scholar 

  • Ren P, Wang X, Guo H (2009) Species abundance distribution pattern of forest communities on Loess Plateau. Chin J Ecol 29:1449–1455

    Google Scholar 

  • Rigano L, Bonfigli A, Walther R (2012) Bioactivity evaluations of Quillaja saponaria (Soap Bark Tree) Saponins in skin and scalp sebaceous imbalances. SOFW Journal-Seifen Ole Fette Wachse 138(3):14–21

    CAS  Google Scholar 

  • Rodríguez R, Mattei O, Quezada M (1983) Flora arbórea de Chile. Editorial Universidad de Concepción, Concepción, Chile

    Google Scholar 

  • Rodríguez R, Ruiz E, Elissetche J (2006) Árboles en Chile. Editorial Universidad de Concepción, Concepción, Chile

    Google Scholar 

  • Sáenz-Romero C (2004) Zonificación estatal y altitudinal para la colecta y movimiento de semillas de coníferas en México. Manejo de recursos genéticos forestales. Colegio de Postgraduados, Jalisco, México

    Google Scholar 

  • Sagarin RD, Gaines SD, Gaylord B (2006) Moving beyond assumptions to understand abundance distributions across the ranges of species. Trends Ecol Evol 21(9):524–530

    Article  PubMed  Google Scholar 

  • San Martín R, Briones R (1999) Industrial uses and sustainable supply of Quillaja saponaria (Rosaceae) saponins. Econom Bot 53(3):302–311

    Article  Google Scholar 

  • Saporta G (1999) Some simple rules for interpreting outputs of principal components and correspondence analysis. In: Proceedings of “9th International Symposium on Applied Stochastic Models and Data Analysis ASMDA-99”, University of Lisbon, 14–17 June 1999. Lisbon, Portugal, pp 1–7

  • Saporta G (2003) A control chart approach to select eigenvalues in principal component and correspondence analysis. In: “54th Session of the International Statistical Institute”, Berlin, Germany, pp 1–3

  • Schulz JJ, Cayuela L, Echeverría C, Salas J, Rey Benayas JM (2010) Monitoring land cover change of the dryland forest landscape of Central Chile (1975–2008). Appl Geogr 30:436–447

    Article  Google Scholar 

  • Schulz JJ, Cayuela L, Rey Benayas JM, Schröder B (2011) Factors influencing vegetation cover change in Mediterranean Central Chile (1975–2008). Appl Veg Sci 14(4):571–582

    Article  Google Scholar 

  • Seber GAF (2004) Multivariate observations. Wiley-Interscience, New Jersey, USA

    Google Scholar 

  • Shryock DF, DeFalco LA, Esque TC (2018) Spatial decision-support tools to guide restoration and seed-sourcing in the desert southwest. Ecosphere 9:e02453

    Article  Google Scholar 

  • Thomas C, Cameron A, Green R, Bakkenes M, Beaumont L, Collingham Y, Erasmus B, Ferreira De Siqueria M, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaasverld A, Midgley G, Miles L, Ortega-Huerta M, Peterson A, Phillpis O, Williams S (2004) Extinction risk from climate change. Nat 427:145–148

    Article  CAS  Google Scholar 

  • Van Couwenberghe R, Collet C, Lacombe E, Gégout J (2011) Abundance response of western Europe forest species along canopy openness and soil pH gradients. For Ecol Manag 262:1483–1490

    Article  Google Scholar 

  • Van Couwenberghe R, Collet C, Pierrat J, Verheyen K, Géogut J (2013) Can species distribution models be used to describe plant abundance patterns? Ecography 36:665–674

    Article  Google Scholar 

  • Velázquez J (2002) Agrofenoclimatología. Universidad Autónoma del Estado de México, México

  • Venables WN, Ripley BD (2002) Modern Applied Statistics with S. Springer, New York, USA

    Book  Google Scholar 

  • Vicenti B, Loo J, Gaisberger H, Van Zonnveld M, Schueler S, Konrad H, Kadu C, Geburek T (2013) Conservation priorities for Prunus africana defined with the aid of spatial analysis of genetic data and climatic variables. PLoS ONE 8(3):e59987

    Article  Google Scholar 

  • Wilkinson DM (2001) Is local provenance important in habitat creation? J Appl Ecol 38(6):1371–1373

    Article  Google Scholar 

  • Ying CC, Yanchuk AD (2006) The development of British Columbia’s tree seed transfer guidelines: purpose, concept, methodology, and implementation. For Ecol Manag 227(1):1–13

    Article  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Centro Productor de Semillas y Árboles Forestales at the Universidad de Chile for supporting this research, and for providing some comments on the manuscript. This projects was funded by the Corporación Nacional Forestal de Chile (CONAF) through the grant FIBN-CONAF 067/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos R. Magni.

Ethics declarations

Conflict of interest

None declared.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, M., Abarca, B., Espinoza, S. et al. A proposed methodology for the determination of seed sources for tree native species based on environmental variables: the case of Quillaja saponaria Mol. New Forests 55, 1–13 (2024). https://doi.org/10.1007/s11056-022-09961-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-022-09961-7

Keywords

Navigation