Skip to main content

Advertisement

Log in

Determining suitable locations for seed transfer under climate change: a global quantitative method

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Changing climate conditions will complicate efforts to match seed sources with the environments to which they are best adapted. Tree species distributions may have to shift to match new environmental conditions, potentially requiring the establishment of some species entirely outside of their current distributions to thrive. Even within the portions of tree species ranges that remain generally suitable for the species, local populations may not be well-adapted to altered local conditions. To assist efforts to restore forests and to maximize forest productivity in the face of climate change, we developed a set of 30,000 quantitatively defined seed transfer “ecoregions” across the globe. Reflecting current and future conditions, these were created by combining global maps of potentially important environmental characteristics using a large-scale statistical clustering technique. This approach assigns every 4 km2 terrestrial raster cell into an ecoregion using non-hierarchical clustering of the cells in multivariate space based on 16 environmental variables. Two cells anywhere on the map with similar combinations of environmental characteristics are located near each other in this data space; cells are then classified into relatively homogeneous ecoregion clusters. Using two global circulation models and two emissions scenarios, we next mapped the predicted environmentally equivalent future locations of each ecoregion in 2050 and 2100. We further depicted areas of decreasing environmental similarity to given ecoregions, both in current time and under climate change. This approach could help minimize the risk that trees used for production, restoration, reforestation, and afforestation are maladapted to their planting sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Apsit VJ, Dyer RJ, Sork VL (2002) Patterns of mating in an insect-pollinated tree species in the Missouri Ozark Forest Ecosystem Project (MOFEP). In: Shifley SR, Kabrick JM (eds) Second Missouri Ozark Forest Ecosystem Project Ecosystem symposium: post-treatment results of the landscape experiment, general technical report NC-227. USDA Forest Service, North Central Experiment Station, St. Paul, pp 212–226

  • Baker B, Diaz H, Hargrove W, Hoffman F (2010) Use of the Koppen-Trewartha climate classification to evaluate climatic refugia in statistically derived ecoregions for the People’s Republic of China. Clim Change 98(1–2):113–131. doi:10.1007/s10584-009-9622-2

    Article  Google Scholar 

  • Bower AD, Aitken SN (2008) Ecological genetics and seed transfer guidelines for Pinus albicaulis (Pinaceae). Am J Bot 95:66–76

    Article  PubMed  Google Scholar 

  • Boyer WD (1990) Longleaf pine. In: Burns RM, Honkala BH (eds) Silvics of North America: 1. Conifers, vol 1. Agricultural handbook 654. U.S. Department of Agriculture, Forest Service, Washington, DC

  • Broadhurst LM, Lowe A, Coates DJ, Cunningham SA, McDonald M, Vesk PA, Yates C (2008) Seed supply for broadscale restoration: maximizing evolutionary potential. Evol Appl 1(4):587–597. doi:10.1111/j.1752-4571.2008.00045.x

    Google Scholar 

  • Carr DE, Banas LE (2000) Dogwood anthracnose (Discula destructiva): effects of and consequences for host (Cornus florida) demography. Am Midl Nat 143(1):169–177. doi:10.1674/0003-0031(2000)

    Article  Google Scholar 

  • Crowe KA, Parker WH (2005) Provisional breeding zone determination modeled as a maximal covering location problem. Can J For Res (Revue Canadienne De Recherche Forestiere) 35(5):1173–1182. doi:10.1139/x05-041

    Article  Google Scholar 

  • Fitzpatrick MC, Hargrove WW (2009) The projection of species distribution models and the problem of non-analog climate. Biodivers Conserv 18(8):2255–2261. doi:10.1007/s10531-009-9584-8

    Article  Google Scholar 

  • Gilliam FS, Platt WJ (2006) Conservation and restoration of the Pinus palustris ecosystem. Appl Veg Sci 9(1):7–10. doi:10.1658/1402-2001(2006)

    Article  Google Scholar 

  • Global Soil Data Task Group (2000) Global gridded surfaces of selected soil characteristics (International Geosphere-Biosphere Programme—Data and Information System [IGBP-DIS]). Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge. doi:10.3334/ORNLDAAC/569

  • Griffith GE, Omernik JM, McGinley M (2008) Ecoregions of the United States-Level IV (EPA). Environmental Information Coalition, National Council for Science and the Environment. http://www.eoearth.org/article/Ecoregions_of_the_United_States-Level_IV_(EPA). Accessed 24 Aug 2011

  • Hamann A, Koshy MP, Namkoong G, Ying CC (2000) Genotype x environment interactions in Alnus rubra: developing seed zones and seed-transfer guidelines with spatial statistics and GIS. For Ecol Manag 136(1–3):107–119. doi:10.1016/s0378-1127(99)00284-4

    Article  Google Scholar 

  • Hamann A, Gylander T, Chen PY (2011) Developing seed zones and transfer guidelines with multivariate regression trees. Tree Genet Genomes 7(2):399–408. doi:10.1007/s11295-010-0341-7

    Article  Google Scholar 

  • Hargrove WW, Hoffman FM (2003) An analytical assessment tool for predicting changes in a species distribution map following changes in environmental conditions. In: Parks BO, Clark KM, Crane MP (eds) Proceedings of the 4th international conference on integrating GIS and environmental modeling (GIS/EM4): problems, prospects and research needs, September 2–8, 2000, Banff, Alberta, Canada. Cooperative Institute for Research in Environmental Sciences; NOAA National Geophysical Data Center, Ecosystem Informatics; and US Geological Survey, Center for Biological Informatics

  • Hargrove WW, Hoffman FM (2005) Potential of multivariate quantitative methods for delineation and visualization of ecoregions. Environ Manage 34 (Suppl. 1):S39–S60

    Google Scholar 

  • Hargrove WW, Hoffman FM, Hessburg PF (2006) Mapcurves: a quantitative method for comparing categorical maps. J Geogr Syst 8(2):187–208. doi:10.1007/s10109-006-0025-x

    Article  Google Scholar 

  • Harris JA, Hobbs RJ, Higgs E, Aronson J (2006) Ecological restoration and global climate change. Restor Ecol 14(2):170–176. doi:10.1111/j.1526-100X.2006.00136.x

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  • Hoffman FM, Hargrove WW, Erickson DJ, Oglesby RJ (2005) Using clustered climate regimes to analyze and compare predictions from fully coupled general circulation models. Earth Interact 9(10):1–27

    Article  Google Scholar 

  • Holzmueller E, Jose S, Jenkins M, Camp A, Long A (2006) Dogwood anthracnose in eastern hardwood forests: what is known and what can be done? J For 104(1):21–26

    Google Scholar 

  • Horning ME, McGovern TR, Darris DC, Mandel NL, Johnson R (2010) Genecology of Holodiscus discolor (Rosaceae) in the Pacific Northwest, USA. Restor Ecol 18(2):235–243. doi:10.1111/j.1526-100X.2008.00441.x

    Article  Google Scholar 

  • Hufford KM, Mazer SJ (2003) Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends Ecol Evol 18(3):147–155. doi:10.1016/s0169-5347(03)00002-8

    Article  Google Scholar 

  • Jetton RM, Whittier WA, Dvorak WS, Rhea JR (2010) Status of gene conservation efforts for eastern and Carolina hemlock in the eastern United States. In: Onken B, Reardon R (eds) Fifth Symposium on Hemlock Woolly Adelgid in the Eastern United States, Asheville, North Carolina, 2010. USDA Forest Service, Forest Health Technology Enterprise Team, Morgantown, pp 93–99

    Google Scholar 

  • Johnson GR, Sorensen FC, St Clair JB, Cronn RC (2004) Pacific Northwest forest tree seed zones: a template for native plants? Nativ Plants J 5(2):131–140

    Article  Google Scholar 

  • Johnson GR, Stritch L, Olwell P, Lambert S, Horning ME, Cronn RC (2010a) What are the best seed sources for ecosystem restoration on BLM and USFS lands? Nativ Plants J 11(2):117–131

    Article  Google Scholar 

  • Johnson RC, Erickson VJ, Mandel NL, St Clair JB, Vance-Borland KW (2010b) Mapping genetic variation and seed zones for Bromus carinatus in the Blue Mountains of eastern Oregon. USA Bot 88(8):725–736. doi:10.1139/b10-047

    Google Scholar 

  • Jones TA (2005) Genetic principles and the use of native seeds: just the FAQs, please, just the FAQs. Nativ Plants J 6(1):14–24

    Google Scholar 

  • Kramer AT, Havens K (2009) Plant conservation genetics in a changing world. Trends Plant Sci 14(11):599–607. doi:10.1016/j.tplants.2009.08.005

    Article  PubMed  CAS  Google Scholar 

  • Lesica P, Allendorf FW (1999) Ecological genetics and the restoration of plant communities: mix or match? Restor Ecol 7(1):42–50. doi:10.1046/j.1526-100X.1999.07105.x

    Article  Google Scholar 

  • Little EL (1971) Atlas of United States trees, vol 1. Conifers and Important Hardwoods, Washington, DC

    Google Scholar 

  • Lugo AE, Brown SL, Dodson R, Smith TS, Shugart HH (1999) The Holdridge life zones of the conterminous United States in relation to ecosystem mapping. J Biogeogr 26(5):1025–1038. doi:10.1046/j.1365-2699.1999.00329.x

    Article  Google Scholar 

  • Malaval S, Lauga B, Regnault-Roger C, Largier G (2010) Combined definition of seed transfer guidelines for ecological restoration in the French Pyrenees. Appl Veg Sci 13(1):113–124. doi:10.1111/j.1654-109X.2009.01055.x

    Article  Google Scholar 

  • Manel S, Poncet BN, Legendre P, Gugerli F, Holderegger R (2010) Common factors drive adaptive genetic variation at different spatial scales in Arabis alpina. Mol Ecol 19(17):3824–3835. doi:10.1111/j.1365-294X.2010.04716.x

    Article  PubMed  Google Scholar 

  • Mangold RD, Libby WJ (1978) Model for reforestation with optimal and suboptimal tree populations. Silvae Genet 27(2):66–68

    Google Scholar 

  • McKay JK, Christian CE, Harrison S, Rice KJ (2005) “How local is local?”—a review of practical and conceptual issues in the genetics of restoration. Restor Ecol 13(3):432–440. doi:10.1111/j.1526-100X.2005.00058.x

    Article  Google Scholar 

  • McLemore BC (1990) Flowering dogwood. In: Burns RM, Honkala BH (eds) Silvics of North America: 2. Hardwoods, vol 2. Agricultural Handbook 654. U.S. Department of Agriculture, Forest Service, Washington, DC

  • Miller SA, Bartow A, Gisler M, Ward K, Young AS, Kaye TN (2010) Can an ecoregion serve as a seed transfer zone? Evidence from a common garden study with five native species. Restor Ecol 19:268–276. doi:10.1111/j.1526-100X.2010.00702.x

    Article  Google Scholar 

  • Montalvo AM, Ellstrand NC (2000) Transplantation of the subshrub Lotus scoparius: testing the home-site advantage hypothesis. Conserv Biol 14(4):1034–1045. doi:10.1046/j.1523-1739.2000.99250.x

    Article  Google Scholar 

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modeling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5(1):3–30. doi:10.1002/hyp.3360050103

    Article  Google Scholar 

  • Neilson RP (1995) A model for predicting continental-scale vegetation distribution and water balance. Ecol Appl 5(2):362–385. doi:10.2307/1942028

    Article  Google Scholar 

  • O’Brien EK, Mazanec RA, Krauss SL (2007) Provenance variation of ecologically important traits of forest trees: implications for restoration. J Appl Ecol 44(3):583–593. doi:10.1111/j.1365-2664.2007.01313.x

    Article  Google Scholar 

  • O’Neill GA, Aitken SN (2004) Area-based breeding zones to minimize maladaptation. Can J For Res (Revue Canadienne De Recherche Forestiere) 34(3):695–704. doi:10.1139/x03-227

    Article  Google Scholar 

  • Parker WH (1992) Focal point seed zones: site-specific seed zone delineation using geographic information systems. Can J For Res (Revue Canadienne De Recherche Forestiere) 22(2):267–271. doi:10.1139/x92-035

    Article  Google Scholar 

  • Parker WH (2000) Rates of change of adaptive variation in Picea mariana visualized by GIS using a differential systematic coefficient. New For 20(3):259–276. doi:10.1023/a:1006736019650

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42

    Article  PubMed  CAS  Google Scholar 

  • Persson B (1998) Will climate change affect the optimal choice of Pinus silvestris provenances? Silva Fennica 32(2):121–128

    Google Scholar 

  • Pojar J, Klinka K, Meidinger DV (1987) Biogeoclimatic ecosystem classification in British Columbia. Forest Ecol Manag 22(1–2):119–154. doi:10.1016/0378-1127(87)90100-9

    Article  Google Scholar 

  • Potter KM, Hargrove WW, Koch FH (2010) Predicting climate change extirpation risk for central and southern Appalachian forest tree species. In: Proceedings from the conference on ecology and management of high-elevation forests of the Central and Southern Appalachian Mountains, Snowshoe, West Virginia, May 14–15, 2009. USDA Forest Service, Northern Research Station, Newtown Square

  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19(2):117–134. doi:10.2307/2845499

    Article  Google Scholar 

  • Rehfeldt GE, Jaquish BC (2010) Ecological impacts and management strategies for western larch in the face of climate-change. Mitig Adapt Strateg Glob Change 15(3):283–306. doi:10.1007/s11027-010-9217-2

    Article  Google Scholar 

  • Rehfeldt GE, Ying CC, Spittlehouse DL, Hamilton DA (1999) Genetic responses to climate in Pinus contorta: Niche breadth, climate change, and reforestation. Ecol Monogr 69(3):375–407

    Google Scholar 

  • Rehfeldt GE, Wykoff WR, Ying CC (2001) Physiologic plasticity, evolution, and impacts of a changing climate on Pinus contorta. Clim Change 50(3):355–376

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421(6918):57–60. doi:10.1038/nature01333

    Article  PubMed  CAS  Google Scholar 

  • Sackville Hamilton NR (2001) Is local provenance important in habitat creation? A reply. J Appl Ecol 38(6):1374–1376

    Article  Google Scholar 

  • Saxon E, Baker B, Hargrove W, Hoffman F, Zganjar C (2005) Mapping environments at risk under different global climate change scenarios. Ecol Lett 8(1):53–60. doi:10.1111/j.1461-0248.2004.00694.x

    Article  Google Scholar 

  • Schmidtling RC (1994) Use of provenance tests to predict response to climatic change: loblolly pine and Norway spruce. Tree Physiol 14(7–9):805–817

    PubMed  Google Scholar 

  • Schmidtling RC (2001) Southern pine seed sources. United State Department of Agriculture, Forest Service, Southern Research Station, Asheville

  • Smith WB (2002) Forest inventory and analysis: a national inventory and monitoring program. Environ Pollut 116:S233–S242

    Article  PubMed  CAS  Google Scholar 

  • Smith BM, Diaz A, Daniels R, Winder L, Holland JM (2009) Regional and ecotype traits in Lotus corniculatus L., with reference to restoration ecology. Restor Ecol 17(1):12–23. doi:10.1111/j.1526-100X.2007.00327.x

  • Thomson AM, Crowe KA, Parker WH (2010) Optimal white spruce breeding zones for Ontario under current and future climates. Can J For Res (Revue Canadienne De Recherche Forestiere) 40(8):1576–1587. doi:10.1139/x10-112

    Article  Google Scholar 

  • United States Department of Agriculture Forest Service (2008) Forest inventory and analysis national core field guide, version 4.0. USDA Forest Service, Forest Inventory and Analysis National Office. www.fia.fs.fed.us/library/field-guides-methods-proc. Accessed 20 Feb 2008

  • Van Lear DH, Carroll WD, Kapeluck PR, Johnson R (2005) History and restoration of the longleaf pine-grassland ecosystem: implications for species at risk. For Ecol Manag 211(1–2):150–165. doi:10.1016/j.foreco.2005.02.014

    Article  Google Scholar 

  • Vander Mijnsbrugge K, Bischoff A, Smith B (2010) A question of origin: where and how to collect seed for ecological restoration. Basic Appl Ecol 11(4):300–311. doi:10.1016/j.baae.2009.09.002

    Article  Google Scholar 

  • Vitt P, Havens K, Kramer AT, Sollenberger D, Yates E (2010) Assisted migration of plants: changes in latitudes, changes in attitudes. Biol Conserv 143(1):18–27. doi:10.1016/j.biocon.2009.08.015

    Article  Google Scholar 

  • Vogel KP, Schmer MR, Mitchell RB (2005) Plant adaptation regions: ecological and climatic classification of plant materials. Rangel Ecol Manag 58(3):315–319. doi:10.2111/1551-5028(2005)

    Article  Google Scholar 

  • Wilkinson DM (2001) Is local provenance important in habitat creation? J Appl Ecol 38(6):1371–1373. doi:10.1046/j.0021-8901.2001.00669.x

    Article  Google Scholar 

  • Williams CE, Moriarity WJ (1999) Occurrence of flowering dogwood (Cornus florida L.), and mortality by dogwood anthracnose (Discula destructiva Redlin), on the northern Allegheny Plateau. J Torrey Bot Soc 126(4):313–319. doi:10.2307/2997315

    Google Scholar 

  • Wilson BL, Darris DC, Johnson R, Horning ME, Kuykendall K (2008) Seed transfer zones for a native grass (Festuca roemeri): genecological evidence. Nativ Plants J 9(3):287–302

    Article  Google Scholar 

  • Woodall CW, Oswalt CM, Westfall JA, Perry CH, Nelson MD, Finley AO (2009) An indicator of tree migration in forests of the eastern United States. For Ecol Manag 257(5):1434–1444. doi:10.1016/j.foreco.2008.12.013

    Article  Google Scholar 

  • Wu HX, Ying CC (2004) Geographic pattern of local optimality in natural populations of lodgepole pine. For Ecol Manag 194(1–3):177–198. doi:10.1016/j.foreco.2004.02.017

    Article  Google Scholar 

  • Wu HX, Ying CC, Ju HB (2005) Predicting site productivity and pest hazard in lodgepole pine using biogeoclimatic system and geographic variables in British Columbia. Ann For Sci 62(1):31–42. doi:10.1051/forest:2004089

    Article  Google Scholar 

  • Ying CC, Yanchuk AD (2006) The development of British Columbia’s tree seed transfer guidelines: purpose, concept, methodology, and implementation. For Ecol Manag 227(1–2):1–13

    Article  Google Scholar 

Download references

Acknowledgments

We thank Frank Koch for assistance with the Forest Inventory and Analysis data and Steve Norman for helpful suggestions. Forrest Hoffman was instrumental in developing the parallel MSTC code and ran the clustering analysis. Barry Baker and Chris Zganjar prepared the input data sets used for the MSTC process. This work was supported in part by the Eastern Environmental Threat Assessment Center; by the Forest Health Monitoring program of the United States Department of Agriculture (USDA) Forest Service; and by Research Joint Venture Agreements 10-JV-11330146-049 and 11-JV-11330146-090 between the USDA Forest Service, Southern Research Station, and North Carolina State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Potter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potter, K.M., Hargrove, W.W. Determining suitable locations for seed transfer under climate change: a global quantitative method. New Forests 43, 581–599 (2012). https://doi.org/10.1007/s11056-012-9322-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-012-9322-z

Keywords

Navigation