Aldrete A, Mexal JG, Phillips R, Vallotton AD (2002) Copper coated polybags improve seedling morphology for two nursery-grown Mexican pine species. For Ecol Manag 163:197–204. DOI: https://doi.org/10.1016/S0378-1127(01)00579-5
Article
Google Scholar
Ambrosini VG, Rosa DJ, Prado JPC, Borghezan M, Melo GWB, Soares CRFS, Comin JJ, Simão DG, Brunetto G (2015) Reduction of copper phytotoxicity by liming: a study of the root anatomy of young vines (Vitis labrusca L.). Plant Physiol Biochem 96:270–280. DOI: https://doi.org/10.1016/j.plaphy.2015.08.012
CAS
Article
PubMed
Google Scholar
Ambrosini VG, Rosa DJ, Bastos de Melo GW, Zalamena J, Cella C, Guimarães Simão D, Souza da Silva L, Pessoa dos Santos H, Toselli M, Tiecher TL, Brunetto G (2018) High copper content in vineyard soils promotes modifications in photosynthetic parameters and morphological changes in the root system of ‘Red Niagara’ plantlets. Plant Physiol Biochem 128:89–98. DOI: https://doi.org/10.1016/j.plaphy.2018.05.011
CAS
Article
PubMed
Google Scholar
Amendola C, Montagnoli A, Terzaghi M, Trupiano D, Oliva F, Barontic S, Migliettac F, Chiatante D, Scippa GS (2017) Short-term effects of biochar on grapevine fine root dynamics and arbuscular mycorrhizae production. Agric Ecosyst Environ 239:236–245. DOI: https://doi.org/10.1016/j.agee.2017.01.025
CAS
Article
Google Scholar
Arduini I, Godbold DL, Onnis A (1995) Influence of copper on root growth and morphology of Pinus pinea L. and Pinus pinaster Ait. seedlings. Tree Physiol 15:411–415. DOI: https://doi.org/10.1093/treephys/15.6.411
CAS
Article
PubMed
Google Scholar
Argo WR, Biernbaum JA (1994) Irrigation requirements, root-medium pH, and nutrient concentrations of Easter lilies grown in five peat-based media with and without an evaporation barrier. J Amer Soc Hort Sci 119:1151–1156. DOI: https://doi.org/10.21273/JASHS.119.6.1151
Article
Google Scholar
Arnold MA, Struve DK (1993) Root distribution and mineral uptake of coarse-rooted trees grown in cupric hydroxide-treated containers. HortScience 28:988–992
CAS
Article
Google Scholar
Baesso B, Chiatante D, Terzaghi M, Zenga D, Nieminen K, Mahonen AP, Siligato R, Helariutta Y, Scippa GS, Montagnoli A (2018) Transcription factors PRE3 and WOX11 are involved in the formation of new lateral roots from secondary growth taproot in A. thaliana. Plant Biol 20:426–432. DOI: https://doi.org/10.1111/plb.12711
CAS
Article
PubMed
Google Scholar
Barnett JP, McGilvray JM (2002) Copper-treated containers influence root development of longleaf pine seedlings. In: Barnett JP, Dumroese RK, Moorhead DJ (eds) Proceedings of workshops on growing longleaf pine in containers—1999 and 2001. Gen Tech Rep SRS-56. USDA Forest Service, Southern Research Station, Asheville, NC, pp 24–26
Bastin J-F, Finegold Y, Garcia C, Mollicone D, Rezende M, Routh D, Zohner CM, Crowther TW (2019) The global tree restoration potential. Science 365:76–79. DOI: https://doi.org/10.1126/science.aax0848
CAS
Article
PubMed
Google Scholar
Branislav K, Savo R, Dragana M, Petar I, Marina K (2009) Early shoot and root growth dynamics as indicators for the survival of black poplar cuttings. New For 38:177–185. DOI https://doi.org/10.1007/s11056-009-9138-7
Article
Google Scholar
Brouwer R (1963) Some aspects of the equilibrium between overground and underground plant parts. Jaarboek van het Instituut voor Biologisch en Scheikundig onderzoek aan Landbouwgewassen, pp 31–39
Burdett AN, Coates H, Eremko R, Martin PAF (1986) Toppling in British Columbia’s lodgepole pine plantations: significance, cause and prevention. For Chron 62:433–439. DOI: https://doi.org/10.5558/tfc62433-5
Article
Google Scholar
Burdett AN, Martin PAF (1982) Chemical root pruning of coniferous seedlings. HortScience 16:622–624
Google Scholar
Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024. DOI: https://doi.org/10.1126/science.1206432
CAS
Article
PubMed
Google Scholar
Cole RJ, Holl KD, Keene C, Zahawi RA (2011) Direct seeding of late-successional trees to restore tropical montane forest. For Ecol Manag 261:1590–1597. DOI: https://doi.org/10.1016/j.foreco.2010.06.038
Article
Google Scholar
Crawford MA (1997) Update on copper root control. In: Landis TD, Thompson JR (eds) National proceedings, forest and conservation nursery associations. Gen Tech Rep PNW- GTR-419. USDA Forest Service, Pacific Northwest Research Station, Portland, OR, pp 120–124
Crawford MA (2003) Copper-coated containers and their impact on the environment. In: Riley LE, Dumroese RK, Landis TD (eds) National proceedings. forest and conservation nursery associations–2002. RMRS-P-28. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, pp 76–78
Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres M, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ, Wotton BM (2001) Climate change and forest disturbances: climate change can affect forests by altering the frequency, intensity, duration, and timing of fire, drought, introduces species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or landslides. BioScience 51:723–734. DOI: https://doi.org/10.1641/0006- 3568(2001)051[0723:CCAFD]2.0.CO;2
Danjon F, Fourcaud T, Bert D (2005) Root architecture and wind-firmness of mature Pinus pinaster. New Phytol 168:387–400. DOI: https://doi.org/10.1111/j.1469-8137. 2005.01497.x
Article
PubMed
Google Scholar
Deljouei A, Abdi E, Schwarz M, Majnounian B, Sohrabi H, Dumroese RK (2020) Mechanical characteristics of the fine roots of two broadleaved tree species from the temperate Caspian Hyracanian Ecoregion. Forests 11:345. DOI: https://doi.org/10.3390/f11030345
Article
Google Scholar
Di Iorio A, Lasserre B, Scippa GS, Chiatante D (2005) Root system of Quercus pubescens trees growing on different sloping conditions. Ann Bot 95:351–361. DOI: https://doi.org/10.1093/aob/mci033
Article
PubMed
Google Scholar
Dumroese RK, Landis TD (2015) Growing container seedlings: three considerations. Tree Planters’ Notes 58(2):58–62
Google Scholar
Dumroese RK, Landis TD, Pinto JR, Haase DL, Wilkinson KW, Davis AS (2016) Meeting forest restoration challenges: using the target plant concept. Reforesta 1:37–52. DOI: https://doi.org/10.21750/REFOR.1.03.3
Article
Google Scholar
Dumroese RK, Terzaghi M, Chiatante D, Scippa GS, Lasserre B, Montagnoli A (2019) Functional traits of Pinus ponderosa coarse-roots in response to slope conditions. Front Plant Sci 10:947. DOI: https://doi.org/10.3389/fpls.2019.00947
Article
PubMed
PubMed Central
Google Scholar
Dunn GM, Huth JR, Lewty MJ (1997) Coating nursery containers with copper carbonate improves root morphology of five native Australian tree species used in agroforestry systems. Agroforest Syst 37:143–155. DOI: https://doi.org/10.1023/A:1005863707277
Article
Google Scholar
Fernández IS, Černý M, Skalák J, Brzobohatý B (2021) Split root systems: detailed methodology, alternative applications, and implications at leaf proteome level. Plant Methods 17:7. DOI: https://doi.org/10.1186/s13007020 00706 1
Article
Google Scholar
Fernández M, Tejero JR, Pérez I, Soria F, Ruiz F, López G (2007) Effect of copper coating nursery containers on plant growth and root morphology of Eucalyptus globulus Labill. cuttings and seedlings. Silva Lusitana 15:215–227
Google Scholar
Geisler D, Ferree DC (2011) Response of plants to root pruning. Hortic Reviews 6:155–188. DOI: https://doi.org/10.1002/9781118060797.ch5
Article
Google Scholar
Gilman EF, Beeson RJ (1995) Copper hydroxide affects root distribution of Ilex cassine in plastic containers. HortTechnology 5:48–49. DOI: https://doi.org/10.21273/HORTTECH.5.1.48
Article
Google Scholar
Hale SE, Gardiner BA, Wellpott A, Nicoll BC, Achim A (2012) Wind loading of trees: influence of tree size and competition. Eur J For Res 131:203–217. DOI: https://doi.org/10.1007/s10342-010-0448-2
Article
Google Scholar
Haywood JD, Sung SS, Sword Sayer MA (2012) Copper root pruning and container cavity size influence longleaf pine growth through five growing seasons. South J Appl For 36:146–151. DOI: https://doi.org/10.5849/sjaf.10-051
Article
Google Scholar
Iwasa Y, Roughgarden J (1984) Shoot/root balance of plants: optimal growth of a system with many vegetative organs. Theor Popul Biol 25:78–105. DOI: https://doi.org/10.1016/0040-5809(84)90007-8
Article
Google Scholar
James KR, Dahle GA, Grabosky J, Kane B, Detter A (2014) Tree biomechanics literature review: dynamics. Arbor Urban For 40:1–15. DOI: https://doi.org/10.48044/jauf.2014.001
Article
Google Scholar
Jiang W, Liu D, Liu X (2001) Effect of copper on root growth, cell division, and nucleolus of Zea mays. Biol Plant 44:105–109. DOI: https://doi.org/10.1023/A:1017982607493
CAS
Article
Google Scholar
Kong D, Wang J, Wu H, Valverde-Barrantes OJ, Wang R, Zeng H, Kardol P, Zhang H, Feng Y (2019) Nonlinearity of root trait relationships and the root economics spectrum. Nat Commun 10:2203. DOI: https://doi.org/10.1038/s41467-019-10245
Article
PubMed
PubMed Central
Google Scholar
Kramer-Walter KR, Bellingham PJ, Millar TR, Smissen RD, Richardson SJ, Laughlin DC (2016) Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. J Ecol 104:1299–1310. DOI: https://doi.org/10.1111/1365-2745.12562
Article
Google Scholar
Krasowski MJ (2003) Root system modifications by nursery culture reflect on post-planting growth and development of coniferous seedlings. For Chron 79:882–891. DOI: https://doi.org/10.5558/tfc79882-5
Article
Google Scholar
Landis TD, Dumroese RK (2006) Applying the target plant concept to nursery stock quality. In: MacLennan L, Fennessy J (eds) Plant quality: a key to success in forest establishment. National Council Forest Research and Development, Dublin, Ireland, pp 1–10
Google Scholar
Landis TD, Dumroese RK, Haase DL (2010a) The Target Plant Concept. In: Landis TD, Dumroese RK, Haase DL (eds) Container tree nursery manual vol 7: seedling processing, storage, and outplanting. Agric Handbk 674. USDA Forest Service, Washington, DC, pp 3–15
Google Scholar
Landis TD, Luna T, Dumroese RK (2014) Containers, Chap. 7. In: Wilkinson KM, Landis TD, Haase DL, Daley BF, Dumroese RK (eds) Tropical nursery manual: a guide to starting and operating a nursery for native and traditional plants. Agric Handbk 732. USDA Forest Service, Washington, DC, pp 123–139
Google Scholar
Landis TD, Steinfeld DE, Dumroese RK (2010b) Native plant containers for restoration projects. Native Plants J 11:341–348. DOI: 10.1353/npj.2010b.0006
Article
Google Scholar
Liu J, Bloomberg M, Li G, Liu Y (2016) Effects of copper root pruning and radicle pruning on first-season field growth and nutrient status of Chinese cork oak seedlings. New For 47:715–729. DOI: https://doi.org/10.1007/s11056-016-9540-x
Article
Google Scholar
Löf M, Madsen P, Metslaid M, Witzell J, Jacobs DF (2019) Restoring forests: regeneration and ecosystem function for the future. New For 50:139–151. DOI: https://doi.org/10.1007/s11056-019-09713-0
Article
Google Scholar
Lombardi F, Scippa GS, Lasserre B, Montagnoli A, Tognetti R, Marchetti M, Chiatante D (2017) The influence of slope on Spartium junceum root system: morphological, anatomical and biomechanical adaptation. J Plant Res 130:515–525. DOI: https://doi.org/10.1007/s10265-017-0919-3
Article
PubMed
Google Scholar
Luoranen J, Rikala R, Konttinen K, Smolander H (2006) Summer planting of Picea abies container-grown seedlings: Effects of planting date on survival, height growth and root egress. For Ecol Manag 237:534–544. DOI: https://doi.org/10.1016/j.foreco.2006.09.073
Article
Google Scholar
Marler T, Musser C (2016) Chemical and air pruning of roots influence post-transplant root traits of the critically endangered Serianthes nelsonii. Plant Root 10:21–25. DOI:https://doi.org/10.3117/plantroot.10.21
CAS
Article
Google Scholar
McDonald SE, Tinus RW, Reid CPP (1984) Modification of ponderosa pine root systems in containers. J Environ Hort 2:1–5. DOI: https://doi.org/10.24266/0738-2898-2.1.1
CAS
Article
Google Scholar
Mexal JG, South DB (1991) Bareroot seedling culture. In: Duryea ML, Dougherty PM (eds) Forest regeneration manual. Kluwer Academic Publishers, The Netherlands, pp 89–115. DOI: https://doi.org/10.1007/978-94-011-3800-0_6
Chapter
Google Scholar
Montagnoli A, Baronti S, Alberto D, Chiatante D, Scippa GS, Terzaghi M (2021) Pioneer and fibrous root seasonal dynamics of Vitis vinifera L. are affected by biochar application to a low fertility soil: a rhizobox approach. Sci Total Environ 751:141455. DOI: https://doi.org/10.1016/j.scitotenv.2020.141455
CAS
Article
PubMed
Google Scholar
Montagnoli A, Dumroese RK, Terzaghi M, Pinto JR, Fulgaro N, Scippa GS, Chiatante D (2018) Tree seedling response to LED spectra: implications for forest restoration. Plant Biosyst 152:515–523. DOI: https://doi.org/10.1080/11263504.2018.1435583
Article
Google Scholar
Montagnoli A, Lasserre B, Sferra G, Chiatante D, Scippa GSS, Terzaghi M, Dumroese RK (2020) Formation of annual ring eccentricity in coarse roots within the root cage of Pinus ponderosa growing on slopes. Plants 9:181. DOI:https://doi.org/10.3390/plants9020181
Article
PubMed Central
Google Scholar
Montagnoli A, Terzaghi M, Chiatante D, Scippa GS, Lasserre B, Dumroese RK (2019) Ongoing modifications to root system architecture of Pinus ponderosa growing on a sloped site revealed by tree-ring analysis. Dendrochronologia 58:125650. DOI: https://doi.org/10.1016/j.dendro.2019.125650
Article
Google Scholar
Montagnoli A, Terzaghi M, Fulgaro N, Stoew B, Wipenmyr J, Ilver D, Rusu C, Scippa GS, Chiatante D (2016) Non-destructive phenotypic analysis of early stage tree seedling growth using an automated stereovision imaging method. Front Plant Sci 7:1644. DOI: https://doi.org/10.3389/fpls.2016.01644
Article
PubMed
PubMed Central
Google Scholar
Montagnoli A, Terzaghi M, Scippa GS, Chiatante D (2014) Heterorhizy can lead to underestimation of fine-root production when using mesh-based techniques. Acta Oecol 59:84e90. DOI: https://doi.org/10.1016/j.actao.2014.06.004
Article
Google Scholar
Pierret A, Maeght J-L, Clément C, Montoroi J-P, Hartmann C, Gonkhamdee S (2016) Understanding deep roots and their functions in ecosystems: an advocacy for more unconventional research. Ann Bot 118:621–635. DOI: https://doi.org/10.1093/aob/mcw130
CAS
Article
PubMed
PubMed Central
Google Scholar
Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Aust J Plant Physiol 27:595–607. DOI: https://doi.org/10.1071/PP99173_CO
CAS
Article
Google Scholar
Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012) Biomass allocation to leaves, stems and roots. meta-analyses of interspecific variation and environmental control New Phytol 193:30–50. DOI: https://doi.org/10.1111/j.1469-8137.2011.03952.x
CAS
Article
PubMed
Google Scholar
Pregitzer KS, Friend AL (1996) The structure and function of Populus root systems. In: Stettler RF, Bradshaw HD, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. NRC Research Press, Ottawa, Canada, pp 331–353
Google Scholar
Puri S, Thompson F (2003) Relationship of water to adventitious rooting in stem cuttings of Populus species. Agroforest Syst 58:1–9. DOI: https://doi.org/10.1023/A:1025494221846
Article
Google Scholar
Qin R, Wang C, Chen D, Björn LO, Li S (2015) Copper-induced root growth inhibition of Allium cepa var. Agrorarum L. involves disturbances in cell division and DNA damage. Environ Toxicol Chem 34:1045–1055. DOI: https://doi.org/10.1002/etc.2884
CAS
Article
PubMed
Google Scholar
Quine CP, Gardiner BA (2007) Understanding how the interaction of wind and trees results in windthrow, stem breakage and canopy gap formation. In: Johnson E, Miyanishi K (eds) Plant disturbance ecology: the process and the response. Elsevier Academic Press, Amsterdam, pp 103–156
Chapter
Google Scholar
Ruehle JL (1985) The effect of cupric carbonate on root morphology of containerized mycorrhizal pine seedlings. Can J Forest Res 15:586–592. DOI: https://doi.org/10.1139/x85-095
CAS
Article
Google Scholar
Sayer MAS, Haywood JD, Sung S-JS (2009) Cavity size and copper root pruning affect production and establishment of container-grown longleaf pine seedlings. For Sci 55:377–389. DOI: https://doi.org/10.1093/forestscience/55.5.377
Article
Google Scholar
Sayer MAS, Sung S-JS, Haywood JD (2011) Longleaf pine root system development and seedling quality in response to copper root pruning and cavity size. South J Appl For 35:5–11. DOI: https://doi.org/10.1093/sjaf/35.1.5
Article
Google Scholar
Seidl R, Dominik T, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, Lexer MJ, Trotsiuk V, Mairota P, Svoboda M, Fabrika M, Nagel TA, Reyer (2017) Forest disturbances under climate change. Nat Clim Change 7:395–402. DOI: https://doi.org/10.1038/nclimate3303
Article
Google Scholar
Sheldon AR, Menzies NW (2005) The effect of copper toxicity on the growth and root morphology of Rhodesgrass (Chloris gayana Knuth.) in resin buffered solution culture. Plant Soil 278:341–349. DOI https://doi.org/10.1007/s11104-005-8815-3
CAS
Article
Google Scholar
Sims JL, Patrick WH Jr (1977) The distribution of micronutrient cations in soil under conditions of varying redox potential and pH. Soil Sci Soc Am J 42:258–262. DOI: https://doi.org/10.2136/sssaj1978.03615995004200020010x
Article
Google Scholar
South DB, Harris SW, Barnett JP, Hainds MJ, Gjerstad DH (2005) Effect of container type and seedling size on survival and early height growth of Pinus palustris seedlings in Alabama, USA. For Ecol Manag 204:385–398. DOI: https://doi.org/10.1016/j.foreco.2004.09.016
Article
Google Scholar
Stanturf JA, Palik BJ, Dumroese RK (2014) Contemporary forest restoration: a review emphasizing function. For Ecol Manag 331:292–323. DOI: https://doi.org/10.1016/j.foreco.2014.07.029
Article
Google Scholar
Steffens B and Rasmussen A. 2016. The Physiology of Adventitious Roots. Plant Physiology 170:603–617
Stokes A, Atger C, Bengough AG, Fourcaud T, Sidle RC (2009) Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant Soil 324:1–30. DOI:https://doi.org/10.1007/s11104-009-0159-y
CAS
Article
Google Scholar
Sung S-JS, Haywood JD, Sword-Sayer MA, Connor KF, Scott AD (2010) Effects of container cavity size and copper coating on field performance of container-grown longleaf pine seedlings. In: Stanturf JA (ed) Proceedings of the 14th biennial southern silvicultural research conference. Gen Tech Rep SRS-GTR-121. USDA Forest Service, Southern Research Station, Asheville, NC, pp 241–245
Telewski FW, Moore JR (2016) Trait selection to improve wind firmness in trees. CAB Rev 11:1–10. DOI: https://doi.org/10.1079/PAVSNNR201611050
Article
Google Scholar
Thornley JHM (1972) A balanced quantitative model for root: shoot ratios in vegetative plants. Ann Bot 36:431–441. DOI: https://doi.org/10.1093/oxfordjournals.aob.a084602
Article
Google Scholar
Tsakaldimi MN, Ganatsas PP (2006) Effect of chemical root pruning on stem growth, root morphology and field performance of the Mediterranean pine Pinus halepensis Mill. Sci Hort 109:183–189. DOI: https://doi.org/10.1016/j.scienta.2006.04.007
CAS
Article
Google Scholar
Vogel JG, Jokela EJ (2011) Micronutrient limitations in two managed southern pine stands planted on Florida spodosols. Soil Sci Soc Am J 75:1117–1124. DOI: https://doi.org/10.2136/sssaj2010.0312
CAS
Article
Google Scholar
Wang FX, Wang ZY, Leeb JHW (2007) Acceleration of vegetation succession on eroded land by reforestation in a sub- tropical zone. Ecol Eng 31:232–241. DOI: https://doi.org/10.1016/j.ecoleng.2007.07.004
Article
Google Scholar
Wenny DL, Woollen RL (1989) Chemical root pruning improves the root system morphology of containerized seedlings. West J Appl For 4:15–17. DOI:https://doi.org/10.1093/wjaf/4.1.15
Article
Google Scholar
Wenny DL, Liu Y, Dumroese RK, Osborne HL (1988) First year field growth of chemically root pruned containerized seedlings. New For 2:111–118. DOI: https://doi.org/10.1007/BF00027762
Article
Google Scholar
Xu D, Miao J, Yumoto E, Yokota T, Asahina M, Watahiki M (2017) YUCCA9-mediated auxin biosynthesis and polar auxintransport synergistically regulate regeneration of root systems following root cutting. Plant Cell Physiol 58:1710–1723. DOI:https://doi.org/10.1093/pcp/pcx107
CAS
Article
PubMed
PubMed Central
Google Scholar
Yang M, Défossez P, Danjon F, Dupont S, Fourcaud T (2017) Which root architectural elements contribute the best to anchorage of Pinus species? Insights from in silico experiments. Plant Soil 411:275–291. DOI: https://doi.org/10.1007/s11104-016-2992-0
CAS
Article
Google Scholar
Zhao X, Zheng H, Li S, Yang C, Jiang J, Liu G (2014) The rooting of poplar cuttings: a review. New For 45:21–34. DOI: https://doi.org/10.1007/s11056-013-9389-1
Article
Google Scholar