Skip to main content
Log in

Hypoxic Conditioning as a Stimulus for the Formation of Hypoxic Tolerance in the Brain

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This review addresses the problem of moderate hypoxic exposure as a natural, non-drug stimulus which activates the mechanisms forming hypoxic tolerance in the brain. The history and current level of research into this phenomenon are highlighted, and the conditions in which hypoxic conditioning has neuroprotective efficacy as preventive (preconditioning) and corrective (postconditioning) effects are considered. Physiological and molecular-cellular mechanisms of pre- and post-conditioning are discussed. Particular attention is paid to our own research on cerebral conditioning using mild hypobaric hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Baranova, E. A. Rybnikova, and M. O. Samoilov, “Dynamics of YIF-1α expression in the brains of rats at different stages of the formation of experimental PTSD and its correction by moderate hypoxia,” Neirokhimiya, 34, No. 2, 137–145 (2017), https://doi.org/https://doi.org/10.7868/S10278133170200

    Article  Google Scholar 

  2. A. V. Belyakov and D. G. Semenov, “The PI3K/Akt system is involved in neuroprotective preconditioning of rats by moderate hypobaric hypoxia,” Neirokhimiya, 34, No. 3, 209 (2017), https://doi.org/https://doi.org/10.7868/S1027813317020030

    Article  Google Scholar 

  3. A. V. Belyakov and D. G. Semenov, “Stimulation of cognitive abilities in elderly monkeys by moderate hypobaric hypoxia,” Usp. Gerontol., 31, No. 6, 966 (2018), https://www.researchgate.net/publication/331354909.

  4. L. A. Vataeva, E. I. Tyul’kova, and M. O. Samoilov, “The effect of severe hypoxia on the emotional behavior of rats: the corrective effect of preconditioning,” Dokl. Akad. Nauk., 395, 109 (2004), https://elibrary.ru/download/elibrary_17390476_18014199.PDF.

  5. O. V. Retrovir, E. A. Rybnikova, T. S. Hlushchenko, and M. O. Samoilov, “Effects of hypoxic postconditioning on the expression of the anti-apoptotic protein BCL-2 and neurotrophin BDNF in hippocampal field CA1 in rats surviving severe hypoxia,” Morfologiya, 145, 16 (2014a), https://elibrary.ru/download/elibrary_21500567_94138467.pdf.

  6. O. V. Vetrovoi, E. A. Rybnikova, T. S. Glushchenko, et al., “Moderate hypobaric hypoxia in the postconditioning mode increases the expression of YIF-1α and erythropoietin in the CA1 field of the hippocampus of rats that survived severe hypoxia,” Neirokhimiya, 31, 134 (2014b), https://doi.org/https://doi.org/10.7868/S1027813314020137

    Article  Google Scholar 

  7. G. E. Vladimirov, M. Ya. Galvyalo, T. A. Goryukhina, et al., “The use of periods of time in a high-mountain climate for the purposes of high-altitude pilot training,” in: Oxygen Deficit and Countering It. Issues of Training and Nutrition, Leningrad, (1939).

  8. K. N. Dudkin, V. K. Kruchinin, I. V. Chueva, and M. O. Samoilov, “Effects of short-term anoxia on cognitive processes and their neural correlates in monkeys,” Dokl. Akad. Nauk., 333, 543 (1993).

    CAS  PubMed  Google Scholar 

  9. M. Yu. Zen’ko, E. A. Rybnikova, and T. S. Glushchenko, “Expression of the neurotrophin BDNF in the hippocampus and neocortex in rats during the formation of post-stress anxiety and its correction by hypoxic postconditioning,” Morfologiya, 146, 14 (2014), https://elibrary.ru/download/elibrary_22307550_98269326.pdf.

  10. Yu. I. Kirova, and E. L. Germanova, “Interaction of YIF1α with heat shock proteins HSP90 and HSP70 in the cerebral cortex during hypoxia,” Patol. Fiziol. Eksper. Terap., 62, 4 (2018), https://doi.org/10.25557/0031-2991.2018.03.4-11

  11. E. M. Kreps, E. M. Verzhbinskaya, N. A. Verzhbinskaya, et al., “Adaptations of animals to chronic hypoxia (Influence of adaptation to chronic hypoxia at the ‘ceiling’ and at the peak of gas exchange at low oxygen levels),” Fiziol. Zh. SSSR, 42, 149 (1956).

    CAS  PubMed  Google Scholar 

  12. L. N. Maslov and Yu. B. Lishmanov, “Neuroprotective effects of ischemic postconditioning and remote preconditioning. Perspectives for Clinical Application,” Angiol. Sosudist. Khirur., 18, 27 (2012), https://www.angiolsurgery.org/magazine/2012/2/4.htm.

  13. F. Z. Meerson, Stress adaptation: mechanisms and protective crossover effects,” Hyp. Med. J., No. 4, 23 (1993).

  14. A. I. Nazarenko, “ Effect of acclimatization to hypoxia on the course of experimental epileptoform seizures in rats,” Byull. Eksperim. Biol. Med., 53, 48 (1962).

    CAS  Google Scholar 

  15. N. A. Razsolov, A. Ya. Chizhov, B. G. Potievskii, and V. I. Potievskaya, Guidelines for Aviation Doctors, Moscow (2002).

  16. E. A. Rybnikova, V. I. Mironova, S. G. Pivina, et al., “Hypoxic preconditioning prevents the development of post-stress depressive states in rats,” Dokl. Akad. Nauk., 411, 1 (2006), https://elibrary.ru/download/elibrary_9316946_89686257.PDF.

  17. E. A. Rybnikova, V. I. Mironova, S. G. Pivina, et al., “Hormonal mechanisms of the neuroprotective effects of hypoxic preconditioning in rats,” Dokl. Ros. Akad. Nauk., 421, 239 (2008), https://elibrary.ru/download/elibrary_11033044_76103036.pdf.

  18. E. A. Rybnikova, M. G. Vorob’ev, and M. O. Samoilov, “Hypoxic postconditioning corrects behavioral disorders in rats with a model of post-traumatic stress disorder,” Zh. Vyssh. Nerv. Deyat., 62, 364 (2012), https://elibrary.ru/download/elibrary_17759361_86972634.pdf.

  19. E. A. Rybnikova, K. A. Baranova, T. S. Glushchenko, et al., “Participation of transcription factor YIF-1 in the neuronal mechanisms of adaptation to psychoemotional and hypoxic stress,” Fiziol. Zh. Nats. Akad. Nauk. Ukr., 59, No. 6, 88–97 (2013).

    CAS  Google Scholar 

  20. M. O. Samoilov, The Brain and Adaptation. Molecular-Cellular Mechanisms, IFRAN, St. Petersburg (1999).

  21. M. O. Samoilov, D. G. Semenov, E. I. Tyul’kova, and E. A. Bolekhan, “The effect of short-term anoxia on the mechanisms of intracellular signal transduction in the cerebral cortex,” Fiziol. Zh., 80, 37 (1994).

  22. M. O. Samoilov, E. V. Lazarevich, D. G. Semenov, et al., “Adaptive effects of preconditioning of brain neurons,” Ros. Fiziol. Zh., 87, 714 (2001).

    CAS  Google Scholar 

  23. M. O. Samoilov, E. A. Rybnikova, and A. V. Churilova, “Signal molecular and hormonal mechanisms of formation of the protective effects of hypoxic preconditioning,” Obzor Patol. Fiziol. Eksperim. Ter., No. 3, 3 (2012a), https://pfiet.ru/issue/view/58/2012-3.

  24. M. O. Samoilov and E. A. Rybnikova, “Molecular-cellular and hormonal mechanisms of induced brain tolerance to extreme environmental factors (review),” Ros. Fiziol. Zh., 98, 108 (2012b), https://elibrary.ru/download/elibrary_17697773_50176675.pdf.

  25. K. V. Sarieva, A. Yu. Lyanguzov, O. V. Galkina, and O. V. Vetrovoi, “Influence of severe hypoxia on HIF1 and Nrf2 mechanisms of antioxidant defense in rat neocortex,” Neirokhimiya, 36, No. 2, 128–139 (2019), https://doi.org/https://doi.org/10.1134/S1027813319020109.

    Article  Google Scholar 

  26. D. G. Semenov and A. V. Belyakov, “The effects of acute hypobaria on the behavior and long-term memory of rats,” Zh. Aviokosm. Ekol. Med., 52, 53 (2018), https://doi.org/10.21687/0233-528X-2018-52-5-53-57

  27. M. V. Sidorova, E. A. Rybnikova, A. V. Churilova, and M. O. Samoilov, “Effects of different modes of moderate hypobaric hypoxia on IF-1α expression in rat neocortex,” Fiziol. Zh. Nats. Akad. Nauk. Ukr., 59, No. 6, 111–115 (2013).

    CAS  Google Scholar 

  28. M. M. Sirotinin, Life at Altitude and Altitude Sickness, Academy of Sciences of the Ukrainian Soviet Socialist Republic, Kiev (1939).

    Google Scholar 

  29. N. N. Sirotinin, “Influence of adaptations to hypoxia and acclimation to high-altitude climate on the resistance of animals to some extreme conditions,” Patol. Fiziol. Eksper. Ter., No. 5, 12 (1964).

  30. N. N. Sirotinin, The Evolution of Body Resistance and Reactivity, Meditsina, Moskva (1981).

  31. E. I. Tyul’kova, D. G. Semenov, and M. O. Samoilov, “Influence of anoxia on changes in the content of phosphoinositides and bioelectrical activity in the cerebral cortex of the cat,” Byull. Eksperim. Biol. Med., 111, 239 (1991).

  32. T. N. Tsyganova, “Normobaric interval hypoxic training – rationale for creating a new generation of the hypoxicator hypo-oxy-1 (review article),” Russ. J. Rehab. Med., No. 1, 46 (2019), http://rjrm.ru/wp-content/uploads/2019/11/RJRM-2019-1.pdf.

  33. A. Ya. Chizhov, R. B. Strelkov, V. I. Potievskaya, et al., Normobaric Hypoxic Therapy (The “Mountain Air” Method). A Monograph, N. A. Agadzhanyan (ed.), RUDN (1994).

  34. A. V. Churilova, T. S. Glushchenko, and M. O. Samoilov, “Changes in neurons of the hippocampus and neocortex of rats under the influence of various modes of hypobaric hypoxia,” Morfologiya, 141, 7 (2012), https://elibrary.ru/download/elibrary_17354469_12575967.pdf.

  35. C. J. Anderson, A. Kahl, L. Qian, et al., “Prohibitin is a positive modulator of mitochondrial function in PC12 cells under oxidative stress,” J. Neurochem., 146, 235 (2018), https://doi.org/https://doi.org/10.1111/jnc.14472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Angelova, P. Kasymov, V., I. Christie, et al., “Functional oxygen sensitivity of astrocytes,” J. Neurosci., 35, 10460 (2015), https://doi.org/10.1523/JNEUROSCI.0045-15.2015.

  37. Y. Arieli, M. Eynan, H. Gancz, et al., “Heat acclimation prolongs the time to central nervous system oxygen toxicity in the rat. Possible involvement of HSP72,” Brain Res., 962, 15 (2003), https://doi.org/https://doi.org/10.1016/s0006-8993(02)03681-8.

    Article  CAS  PubMed  Google Scholar 

  38. D. Attwell, A. Buchan, S. Charpak, et al., “Glial and neuronal control of brain blood flow,” Nature, 468, 232 (2010), https://doi.org/https://doi.org/10.1038/nature09613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. J. Burda, V. Danielisová, M. Némethová, et al., “Delayed postconditioning initiates additive mechanism necessary for survival of selectively vulnerable neurons after transient ischemia in rat brain,” Cell. Mol. Neurobiol., 26, 1141 (2006), https://doi.org/https://doi.org/10.1007/s10571-006-9036-x.

    Article  PubMed  Google Scholar 

  40. S. Cho, E. M. Park, Zhou, P., et al., “Obligatory role of inducible nitric oxide synthase in ischemic preconditioning,” J. Cereb. Blood Flow Meta., 25, 493 (2005), https://doi.org/10.1038/sj.jcbfm.9600058.

  41. S. C. Correia, R. X. Santos, G. Perry, et al., “Mitochondria: the missing link between preconditioning and neuroprotection,” J. Alzheimer’s Dis., 20, Suppl. 2, 475 (2010), https://doi.org/10.3233/JAD-2010-100669.

  42. S. C. Correia and P. I. Moreira, “Hypoxia-inducible factor 1: a new hope to counteract neurodegeneration,” J. Neurochem., 112, 1 (2010b), https://doi.org/https://doi.org/10.1111/j.1471-4159.2009.06443.x.

    Article  CAS  PubMed  Google Scholar 

  43. V. Danielisová, M. Némethová, M. Gottlieb, and J. Burda, “The changes in endogenous antioxidant enzyme activity after postconditioning,” Cell. Mol. Neurobiol., 26, 1181 (2006), https://doi.org/https://doi.org/10.1007/s10571-006-9034-z.

    Article  CAS  PubMed  Google Scholar 

  44. E. R. De Kloet, E. Vreugdenhil, M. S. Oitzl, and M. Jobs, “Brain corticosteroid receptor balance in health and disease,” Nedcor. Rev., 19, 269 (1998), https://doi.org/https://doi.org/10.1210/edrv.19.3.0331.

    Article  Google Scholar 

  45. C. Defoliant, M. Garrett, and N. R. Gonzalez, “Clinical application of preconditioning and postconditioning to achieve neuroprotection,” Translate. Stroke Res., 4, 19 (2013), https://doi.org/https://doi.org/10.1007/s12975-012-0224-3.

    Article  Google Scholar 

  46. U. Dirnagl, R. P. Simon, and J. M. Hallenbeck, “Ischemic tolerance and endogenous neuroprotection,” Trends Neurosci., 26, No. 5, 248 (2003), https://doi.org/10.1016/S0166-2236(03)00071-7.

  47. M. R. Emerson, S. R. Nelson, F. E. Samson, and T. L. Pazdernik, “Hypoxia preconditioning attenuates brain edema associated with kainic acid-induced status epilepticus in rats,” Brain Res., 825, 189 (1999), https://doi.org/https://doi.org/10.1016/s0006-8993(99)01195-6.

    Article  CAS  PubMed  Google Scholar 

  48. X. Fan, F. Wang, and L. Zhang, et al., “Neuroprotection of hypoxic/ ischemic preconditioning in neonatal brain with hypoxic/ischemic injury,” Rev. Neurosci., 32, 23 (2021), https://doi.org/https://doi.org/10.1515/revneuro-2020-0024.

    Article  CAS  Google Scholar 

  49. T. Furuichi, W. Liu, H. Shi, et al., “Generation of hydrogen peroxide during brief oxygen-glucose deprivation induces preconditioning neuronal protection in primary cultured neurons,” J. Neurosci. Res., 79, 816 (2005), https://doi.org/https://doi.org/10.1002/jnr.20402.

    Article  CAS  PubMed  Google Scholar 

  50. A. T. Gage and P. K. Stanton, “Hypoxia triggers neuroprotective alterations in hippocampal gene expression via a heme-containing sensor,” Brain Res., 719, 172 (1996), https://doi.org/https://doi.org/10.1016/0006-8993 (96)00092-3.

    Article  CAS  PubMed  Google Scholar 

  51. M. Godzik, D. Makarewicz, M. Słomka, et al., “Hypobaric hypoxia postconditioning reduces brain damage and improves antioxidative defense in the model of birth asphyxia in 7-day-old rats,” Neurochem. Res., 39, 68 (2014), https://doi.org/https://doi.org/10.1007/s11064-013-1191-0.

    Article  CAS  Google Scholar 

  52. T. Gaspar, J. A. Snipes, A. R. Busia, et al., “ROS-independent preconditioning in neurons via activation of Mitok(ATP) channels by BMS-191095,” J. Cereb. Blood Flow Meta., 28, 1090 (2008), https://doi.org/https://doi.org/10.1038/sj.jcbfm.9600611.

    Article  CAS  Google Scholar 

  53. E. Gerace, E. Zani, E. Landucci, et al., “Differential mechanisms of tolerance induced by NMDA and 3,5-dihydroxyphenyl glycine (DHPG) preconditioning,” J. Neurochem., 155, 638 (2020), https://doi.org/https://doi.org/10.1111/jnc.15033.

    Article  CAS  PubMed  Google Scholar 

  54. J. M. Gidday, “Cerebral preconditioning and ischemic tolerance,” Nat. Rev. Neurosci., 7, No. 6, 437 (2006), https://doi.org/10.1038/nrn1927.

  55. A. Hashiguchi, S. Yano, M. Morioka, et al., “Up-regulation of endothelial nitric oxide synthase via phosphatidylinositol 3-kinase pathway contributes to ischemic tolerance in the CA1 subfield of gerbil hippocampus,” J. Cereb. Blood Flow Meta., 24, 271 (2004), https://doi.org/https://doi.org/10.1097/01.WCB.0000110539.96047.FC.

    Article  CAS  Google Scholar 

  56. Y. Hao, “Review cerebral ischemic tolerance and preconditioning: Methods, mechanisms, clinical applications, and challenges,” Front. Neurol., 11, 812 (2020), https://doi.org/https://doi.org/10.3389/fneur.2020.00812.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Y. Hirayama, N. Anzai, and S. Koizumi, “Mechanisms underlying sensitization of P2X7 receptors in astrocytes for induction of ischemic tolerance,” Glia, 69, 2100 (2021), https://doi.org/https://doi.org/10.1002/glia.23998.

    Article  CAS  PubMed  Google Scholar 

  58. Y. Hirayama, N. Anzai, H. Kunoichi, and S. Koizumi, “P2X7 Receptors in astrocytes: A switch for ischemic tolerance,” Molecules, 27, 3655 (2022), https://doi.org/https://doi.org/10.3390/molecules27123655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. C. W. Jackson, I. Escobar, J. Xu, and M. A. Perez-Pinzon, “Effects of ischemic preconditioning on mitochondrial and metabolic neuroprotection: 5’-adenosine monophosphate-activated protein kinase and sitins,” Brain Circ., 4, 54 (2018), https://doi.org/https://doi.org/10.4103/bc.bc_7_18.

    Article  PubMed  PubMed Central  Google Scholar 

  60. X. Jiang, D. Zhu, P. Okazaki, et al., “N-methyl-D-aspartate and TrkB receptor activation in cerebellar granule cells: an in vitro model of preconditioning to stimulate intrinsic survival pathways in neurons,” Ann. N.Y. Acad. Sci., 993, 134 (2003), https://doi.org/10.1111/j.1749-6632.2003.tb07522.x.

  61. C. Kaculini, D. J. Wallace, A. E. Haywood, et al., “Protective effects of obstructive sleep apnea on outcomes after subarachnoid hemorrhage: A nationwide analysis,” Neurosurgery, 87, 1008 (2020), https://doi.org/https://doi.org/10.1093/neuros/nyaa242.

    Article  PubMed  Google Scholar 

  62. M. Kakinohana, H. Harada, Y. Mishima, et al., “Neuroprotective effect of epidural electrical stimulation against ischemic spinal cord injury in rats: electrical preconditioning,” Anesthesiology, 103, 84 (2005), https://doi.org/https://doi.org/10.1097/00000542-200507000-00015.

    Article  PubMed  Google Scholar 

  63. H. Kauser, S. Sahu, et al., “Guanfacine is an effective countermeasure for hypobaric hypoxia – induced cognitive decline,” Neuroscience, 254, 110 (2013), https://doi.org/https://doi.org/10.1016/j.neuroscience.2013.09.023.

    Article  CAS  PubMed  Google Scholar 

  64. J. Y. Kim, S. Barua, M. Y. Huang, et al., “Heat shock protein 70 (HSP70) induction: Chaperonotherapy for neuroprotection after brain injury,” Cells, 9, 2020 (2020), https://doi.org/https://doi.org/10.3390/cells9092020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. T. Kirino, Y. Tsujita, and A. Tamura, “Induced tolerance to ischemia in gerbil hippocampal neurons,” J. Cereb. Blood Flow Metab., 11, 299 (1991), https://doi.org/https://doi.org/10.1038/jcbfm.1991.62.

    Article  CAS  PubMed  Google Scholar 

  66. T. Kirino, “Ischemic tolerance,” J. Cereb. Blood Flow Metab., 22, 1283 (2002), https://doi.org/https://doi.org/10.1097/01.wcb.0000040942.89393.88.

    Article  PubMed  Google Scholar 

  67. K. Kitagawa, M. Matsumoto, M. Tagaya, et al., “’Ischemic tolerance’ phenomenon found in the brain,” Brain Res., 528, 21 (1990), https://doi.org/https://doi.org/10.1016/0006-8993(90)90189-i.

    Article  CAS  PubMed  Google Scholar 

  68. H. Kitano, J. R. Kirsch, P. D. Hurn, and S. J. Murphy, “Inhalational anesthetics as neuroprotectants or chemical preconditioning agents in ischemic brain,” J. Cereb. Blood Flow Metab., 27, 1108 (2007), https://doi.org/https://doi.org/10.1038/sj.jcbfm.9600410.

    Article  CAS  PubMed  Google Scholar 

  69. Z. La, L. Gu, L. Yu, et al., “Delta opioid peptide [d-Ala2, d-Leu5] enkephalin confers neuroprotection by activating delta opioid receptor-AMPK-autophagy axis against global ischemia,” Cell Biosci., 10, 79 (2020), https://doi.org/https://doi.org/10.1186/s13578-020-00441-z.

    Article  CAS  Google Scholar 

  70. J. W. Lee, S. H. Bae, J. W. Jeong, et al., “Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions,” Exp. Mol. Med., 36, 1 (2004), https://doi.org/https://doi.org/10.1038/emm.2004.1.

    Article  PubMed  Google Scholar 

  71. Y. Li, X. Cheng, X. Liu, et al., “Treatment of cerebral ischemia through NMDA receptors: Metabotropic signaling and future directions,” Front. Pharmacol., 13, 831181 (2022), https://doi.org/https://doi.org/10.3389/fphar.2022.831181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. A. M. Lin, C. F. Chen, and L. T. Ho, “Neuroprotective effect of intermittent hypoxia on iron-induced oxidative injury in rat brain,” Exp. Neurol., 176, 328 (2002), https://doi.org/https://doi.org/10.1006/exnr.2002.7938.

    Article  CAS  PubMed  Google Scholar 

  73. C. H. Lin, P. S. Chen, and P. W. Gean, “Glutamate preconditioning prevents neuronal death induced by combined oxygen-glucose deprivation in cultured cortical neurons,” Eur. J. Pharmacol., 589, 85 (2008), https://doi.org/https://doi.org/10.1016/j.ejphar.2008.05.047.

    Article  CAS  PubMed  Google Scholar 

  74. M. Lin and M. Beal, “Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases,” Nature, 443, No. 7113, 787 (2006), https://doi.org/https://doi.org/10.1038/nature05292.

    Article  CAS  Google Scholar 

  75. J. Liu, P. Narasimhan, F. Yu, and P. Chan, “Neuroprotection by hypoxic preconditioning involves oxidative stress-mediated expression of hypoxia-inducible factor and erythro-poietin,” Stroke, 36, 1264 (2005), https://doi.org/https://doi.org/10.1161/01.STR.0000166180.91042.02.

    Article  CAS  PubMed  Google Scholar 

  76. X. Q. Liu, R. Sheng, and Z. H. Qin, “The neuroprotective mechanism of brain ischemic preconditioning,” Acta Pharmacol. Sin., 30, No. 8, 1071 (2009), https://doi.org/10.1038/aps.2009.105.

  77. Y. Liu, T. P. Wong, M. Aarts, et al., “NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo,” J. Neurosci., 27, 2846 (2007), https://doi.org/https://doi.org/10.1523/JNEUROSCI.0116-07.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. L. D. Lukyanova and Y. I. Kirova, “Mitochondria-controlled signaling mechanisms of brain protection in hypoxia,” Front. Neurosci., 9, 320 (2015), https://doi.org/https://doi.org/10.3389/fnins.2015.00320.

    Article  PubMed  PubMed Central  Google Scholar 

  79. N. Marina, V. Kasymov, G. L. Ackland, et al., ”Astrocytes and Brain Hypoxia,” Adv. Exp. Med. Biol., 903, 201 (2016), https://doi.org/https://doi.org/10.1007/978-1-4899-7678-9_14.

    Article  CAS  PubMed  Google Scholar 

  80. A. M. Marini, X. Jiang, X. Wu, et al., “Preconditioning and neurotrophins: a model for brain adaptation to seizures, ischemia and other stressful stimuli,” Amino Acids, 32, 299 (2007), https://doi.org/https://doi.org/10.1007/s00726-006-0414-y.

    Article  CAS  PubMed  Google Scholar 

  81. K. Miyashita, H. Abe, et al., “Induction of ischaemic tolerance in gerbil hippocampus by pretreatment with focal ischaemia,” Neuroreport, 6, 46 (1994), https://doi.org/https://doi.org/10.1097/00001756-199412300-00013.

    Article  CAS  PubMed  Google Scholar 

  82. C. E. Murry, R. B. Jennings, and K. A. Reimer, “Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium,” Circulation, 74, 1124 (1986), https://doi.org/https://doi.org/10.1161/01.cir.74.5.1124.

    Article  CAS  PubMed  Google Scholar 

  83. M. Nemethova, V. Danielisova, M. Gottlieb, et al., “Ischemic postconditioning in the rat hippocampus: mapping of proteins involved in reversal of delayed neuronal death,” Arch. Ital. Biol., 148, 23 (2010).

    CAS  PubMed  Google Scholar 

  84. T. P. Obrenovitch, “Molecular physiology of preconditioning-induced brain tolerance to ischemia,” Physiol. Rev., 88, 211 (2008), https://doi.org/https://doi.org/10.1152/physrev.00039.2006.

    Article  CAS  PubMed  Google Scholar 

  85. T. Ozaki, R. Muramatsu, M. Sasai, et al., “The P2X4 receptor is required for neuroprotection via ischemic preconditioning,” Sci. Rep., 6, 25893 (2016), https://doi.org/https://doi.org/10.1038/srep25893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. M. E. Pamenter, J. E. Hall, Y. Tanabe, and T. S. Simonson, “Crossspecies insights into genomic adaptations to hypoxia,” Front. Genet., 11, 743 (2020), https://doi.org/https://doi.org/10.3389/fgene.2020.00743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. M. A. Perez-Pinzon, K. R. Dave, and A. P. Raval, “Role of reactive oxygen species and protein kinase C in ischemic tolerance in the brain,” Antioxid. Redox. Signal., 7, 1150 (2005), https://doi.org/https://doi.org/10.1089/ars.2005.7.1150.

    Article  CAS  PubMed  Google Scholar 

  88. F. Puisieux, D. Deplanque, H. Bulckaen, et al., “Brain ischemic preconditioning is abolished by antioxidant drugs but does not up-regulate superoxide dismutase and glutathione peroxidase,” Brain Res., 1027, 30 (2004), https://doi.org/https://doi.org/10.1016/j.brainres.2004.08.067.

    Article  CAS  PubMed  Google Scholar 

  89. Y. Qu, C. Konrad, C. Anderson, et al., “Prohibitin S-nitrosylation is required for the neuroprotective effect of nitric oxide in neuronal cultures,” J. Neurosci., 40, 3142 (2020), https://doi.org/https://doi.org/10.1523/JNEUROSCI.1804-19.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. A. Ravati, B. Ahlemeyer, A. Becker, and J. Krieglstein, “Preconditioning- induced neuroprotection is mediated by reactive oxygen species,” Brain Res., 866, 23 (2000), https://doi.org/https://doi.org/10.1016/s0006-8993 (00)02210-1.

    Article  CAS  PubMed  Google Scholar 

  91. O. Revah, E. Lasser-Katz, I. A. Fleidervish, and M. J. Gutnick, “The earliest neuronal responses to hypoxia in the neocortical circuit are glutamate-dependent,” Neurobiol. Dis., 95, 158 (2016), https://doi.org/https://doi.org/10.1016/j.nbd.2016.07.019.

    Article  CAS  PubMed  Google Scholar 

  92. C. Ren, X. Gao, G. Niu, et al., “Delayed postconditioning protects against focal ischemic brain injury in rats,” PLoS One, No. 3, 3851 (2008), https://doi.org/https://doi.org/10.1371/journal.pone.0003851.

    Article  CAS  Google Scholar 

  93. E. Rybnikova, L. Vataeva, E. Tyulkova, et al., “Mild hypoxia preconditioning prevents impairment of passive avoidance learning and suppression of brain NGFI-A expression induced by severe hypoxia,” Behav. Brain Res., 160, 107 (2005), https://doi.org/https://doi.org/10.1016/j.bbr.2004.11.023.

    Article  CAS  PubMed  Google Scholar 

  94. E. Rybnikova, V. Mironova, S. Pivina, et al., “Antidepressant-like effects of mild hypoxia preconditioning in the learned helplessness model in rats,” Neurosci. Lett., 417, 234 (2007a), https://doi.org/https://doi.org/10.1016/j.neulet.2007.02.048.

    Article  CAS  PubMed  Google Scholar 

  95. E. Rybnikova, V. Mironova, S. Pivina, et al., “Involvement of hypothalamic-pituitary-adrenal axis in the antidepressant-like effects of mild hypoxic preconditioning in rats,” Psychoneuroendocrinology, 32, 812 (2007b), https://doi.org/https://doi.org/10.1016/j.psyneuen.2007.05.010.

    Article  CAS  Google Scholar 

  96. E. Rybnikova, M. Vorobyev, S. Pivina, and M. Samoilov, “Postconditioning by mild hypoxic exposures reduces rat brain injury caused by severe hypoxia,” Neurosci. Lett., 513, 100 (2012), https://doi.org/https://doi.org/10.1016/j.neulet.2012.02.019.

    Article  CAS  PubMed  Google Scholar 

  97. E. A. Rybnikova, N. N. Nalivaeva, M. Y. Zenko, and K. A. Baranova, “Intermittent hypoxic training as an effective tool for increasing the adaptive potential, endurance and working capacity of the brain,” Front. Neurosci., 16, 941740 (2022), https://doi.org/https://doi.org/10.3389/fnins.2022.941740.

    Article  PubMed  PubMed Central  Google Scholar 

  98. H. Selye, “Stress and the general adaptation syndrome,” BMJ, No. 4667, 1383 (1950), https://doi.org/https://doi.org/10.1136/bmj.1.4667.1383.

    Article  Google Scholar 

  99. M. Samoilov, A. Churilova, T. Gluschenko, and E. Rybnikova, “Neocortical pCREB and BDNF expression under different modes of hypobaric hypoxia: role in brain hypoxic tolerance in rats,” Acta Histochem., 116, 949 (2014), https://doi.org/https://doi.org/10.1016/j.acthis.2014.03.009.

    Article  CAS  PubMed  Google Scholar 

  100. D. G. Semenov, M. O. Samoilov, and J. W. Lazarewicz, “Preconditioning reduces hypoxia-evoked alterations in glutamatergic Ca2+ signaling in rat cortex,” Acta Neurobiol. Exp. (Wars.), 68, 169 (2008).

  101. G. L. Semenza, “Hypoxia-inducible factor 1 and cardiovascular disease,” Annu. Rev. Physiol., 76, 39 (2014), https://doi.org/https://doi.org/10.1146/annurev-physiol-021113-170322.

    Article  CAS  PubMed  Google Scholar 

  102. A. Sharma and R. Goyal, “Cross tolerance: a tread to decipher the code of endogenous global cerebral resistance,” Neural Regen. Res., 11, 719 (2016), https://doi.org/https://doi.org/10.4103/1673-5374.182688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. D. Sharma, L. N. Maslov, N. Singh, and A. S. Jaggi, “Remote ischemic preconditioning-induced neuroprotection in cerebral ischemiareperfusion injury: Preclinical evidence and mechanisms,” Eur. J. Pharmacol., 883, 173380 (2020), https://doi.org/https://doi.org/10.1016/j.ejphar.2020.173380.

    Article  CAS  PubMed  Google Scholar 

  104. K. B. Shpargel, W. Jalabi, Y. Jin, et al., “Preconditioning paradigms and pathways in the brain,” Cleve Clin. J. Med., 75, 77 (2008), https://doi.org/https://doi.org/10.3949/ccjm.75.suppl_2.s77.

    Article  Google Scholar 

  105. F. X. Soriano, S. Papadia, F. Hofmann, et al., “Preconditioning doses of NMDA promote neuroprotection by enhancing neuronal excitability,” J. Neurosci., 26, 4509 (2006), https://doi.org/https://doi.org/10.1523/JNEUROSCI.0455-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. H. J. Steiger and D. Hangii, “Ischaemic preconditioning of the brain, mechanisms and applications,” Acta. Neurochir.(Wien), 149, 1 (2007), https://doi.org/10.1007/s00701-006-1057-1.

  107. M. P. Stenzel-Poore, S. L. Stevens, J. S. King, and R. P. Simon, “Preconditioning reprograms the response to ischemic injury and primes the emergence of unique endogenous neuroprotective phenotypes: a speculative synthesis,” Stroke, 38, 680 (2007), https://doi.org/https://doi.org/10.1161/01.str.0000251444.56487.4c.

    Article  PubMed  Google Scholar 

  108. H. Sun, T. Guo, L. Liu, et al., “Ischemic postconditioning inhibits apoptosis after acute myocardial infarction in pigs,” Heart Surg. Forum, 13, E305 (2010), https://doi.org/https://doi.org/10.1532/hsf98.20101013.

    Article  PubMed  Google Scholar 

  109. J. S. Tauskela, T. Comas, K. Hewitt, et al., “Cross-tolerance to otherwise lethal N-methyl-D-aspartate and oxygen-glucose deprivation in preconditioned cortical cultures,” Neurosci., 107, 571 (2001), https://doi.org/https://doi.org/10.1016/s0306-4522(01)00381-5.

    Article  CAS  Google Scholar 

  110. P. Tregub, V. Kulikov, Y. Motin, et al., “Combined exposure to hypercapnia and hypoxia provides its maximum neuroprotective effect during focal ischemic injury in the brain,” J. Stroke Cerebrovasc. Dis., 24, 381 (2015), https://doi.org/https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.09.003.

    Article  PubMed  Google Scholar 

  111. P. P. Tregub, N. A. Malinovskaya, E. D. Osipova, et al., “Hypercapnia Modulates the Activity of Adenosine A1 Receptors and mitoK+ ATP-channels in rat brain when exposed to intermittent hypoxia,” Neuromolecular Med., 24, 155 (2022), https://doi.org/https://doi.org/10.1007/s12017-021-08672-0.

    Article  CAS  PubMed  Google Scholar 

  112. J. Truettner, R. Busto, W. Zhao, et al., “Effect of ischemic preconditioning on the expression of putative neuroprotective genes in the rat brain,” Brain Res. Mol. Brain Res., 103, 106 (2002), https://doi.org/https://doi.org/10.1016/s0169-328x(02)00191-2.

    Article  CAS  PubMed  Google Scholar 

  113. M. V. Turovskaya, S. G. Gaidin, M. V. Vedunova, et al., “BDNF overexpression enhances the preconditioning effect of brief episodes of hypoxia, promoting survival of GABAergic neurons,” Neurosci. Bull., 36, 733 (2020), https://doi.org/https://doi.org/10.1007/s12264-020-00480-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. K. B. Vartanian, S. L. Stevens, B. J. Marsh, et al., “LPS preconditioning redirects TLR signaling following stroke: TRIF-IRF3 plays a seminal role in mediating tolerance to ischemic injury,” J. Neuroinflammation, 8, 140 (2011), https://doi.org/https://doi.org/10.1186/1742-2094-8-140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. O. Vetrovoy, K. Sarieva, O. Galkina, et al., “Neuroprotective mechanism of hypoxic post-conditioning involves HIF1-associated regulation of the pentose phosphate pathway in rat brain,” Neurochem. Res., 44, 425 (2019), https://doi.org/https://doi.org/10.1007/s11064-018-2681-x.

    Article  CAS  Google Scholar 

  116. O. Vetrovoy, K. Sarieva, E. Lomert, et al., “Pharmacological hif1 inhibition eliminates downregulation of the pentose phosphate pathway and prevents neuronal apoptosis in rat hippocampus caused by severe hypoxia,” J. Mol. Neurosci., 70, 635 (2020), https://doi.org/https://doi.org/10.1007/s12031-019-01469-8.

    Article  CAS  PubMed  Google Scholar 

  117. K. Wada, T. Miyazawa, N. Nomura, et al., “Preferential conditions for and possible mechanisms of induction of ischemic tolerance by repeated hyperbaric oxygenation in gerbil hippocampus,” Neurosurgery, 49, 160 (2001), https://doi.org/https://doi.org/10.1097/00006123-200107000-00025.

    Article  CAS  PubMed  Google Scholar 

  118. F. Wang, X. Xie, X. Xing, and X. Sun, “Excitatory synaptic transmission in ischemic stroke: A new outlet for classical neuroprotective strategies,” Int. J. Mol. Sci., 23, 9381 (2022), https://doi.org/https://doi.org/10.3390/ijms23169381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. C. Wu, R. Z. Zhan, S. Qi, et al., “A forebrain ischemic preconditioning model established in C57Black/Crj6 mice,” J. Neurosci. Methods, 107, 101 (2001), https://doi.org/https://doi.org/10.1016/s0165-0270(01)00356-9.

    Article  CAS  PubMed  Google Scholar 

  120. J. Xiang, A. V. Andjelkovic, N. Zhou, et al., “Is there a central role for the cerebral endothelium and the vasculature in the brain response to conditioning stimuli,” Cond. Med., 5, 220 (2018).

    Google Scholar 

  121. W. Yang, Q. Wang, L. Chi, et al., “Therapeutic hypercapnia reduces blood–brain barrier damage possibly via protein kinase Cε in rats with lateral fluid percussion injury,” J. Neuroinflammation, 16, 36 (2019), https://doi.org/https://doi.org/10.1186/s12974-019-1427-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. M. Yunoki, S. Nishio, N. Ukita, et al., “Hypothermic preconditioning induces rapid tolerance to focal ischemic injury in the rat,” Exp. Neurol., 181, 291 (2003), https://doi.org/https://doi.org/10.1016/s0014-4886(03)00056-6.

    Article  PubMed  Google Scholar 

  123. M. Yunoki, T. Kanda, K. Suzuki, et al., “Ischemic tolerance of the brain and spinal cord: A review,” Neurol. Med. Chirurg., 57, 590 (2017), https://doi.org/https://doi.org/10.2176/nmc.ra.2017-0062.

    Article  Google Scholar 

  124. H. Zhao, “Ischemic postconditioning as a novel avenue to protect against brain injury after stroke,” J. Cereb. Blood Flow Metab., 29, 873 (2009), https://doi.org/https://doi.org/10.1038/jcbfm.2009.13.

    Article  CAS  PubMed  Google Scholar 

  125. Z. Q. Zhao, J. S. Corvera, et al., “Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning,” Am. J. Physiol. Heart Circ. Physiol., 285, H579 (2003), https://doi.org/https://doi.org/10.1152/ajpheart.01064.2002.

    Article  CAS  PubMed  Google Scholar 

  126. H. Zhao, R. M. Sapolsky, and G. K. Steinberg, “Interrupting reperfusion as a stroke therapy: ischemic postconditioning reduces infarct size after focal ischemia in rats,” J. Cereb. Blood Flow Metab., 26, 1114 (2006), https://doi.org/https://doi.org/10.1038/sj.jcbfm.9600348.

    Article  CAS  PubMed  Google Scholar 

  127. H. X. Zhao, X. L. Wang, Y. H. Wang, et al., “Attenuation of myocardial injury by postconditioning: role of hypoxia inducible factor-1alpha,” Basic Res. Cardiol., 105, 109 (2010), https://doi.org/https://doi.org/10.1007/s00395-009-0044-0.

    Article  CAS  PubMed  Google Scholar 

  128. X. Y. Zhao, J. F. Li, T. Z. Li, et al., “Morphine pretreatment protects against cerebral ischemic injury via a cPKCγ-mediated anti-apoptosis pathway,” Exp. Ther. Med., 22, 1016 (2021), https://doi.org/https://doi.org/10.3892/etm.2021.10448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. C. Zhou, J. Tu, Q. Zhang, et al., “Delayed ischemic postconditioning protects hippocampal CA1 neurons by preserving mitochondrial integrity via Akt/GSK3β signaling,” Neurochem. Int., 59, 749 (2011), https://doi.org/https://doi.org/10.1016/j.neuint.2011.08.008.

    Article  CAS  PubMed  Google Scholar 

  130. T. Zhu, L. Zhan, D. Liang, et al., “Hypoxia-inducible factor 1α mediates neuroprotection of hypoxic postconditioning against global cerebral ischemia,” J. Neuropathol. Exp. Neurol., 73, 975 (2014), https://doi.org/https://doi.org/10.1097/nen.0000000000000118.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Semenov.

Additional information

Translated from Uspekhi Fiziologicheskikh Nauk, Vol. 54, No. 2, pp. 3–19, April–June, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, D.G., Belyakov, A.V. Hypoxic Conditioning as a Stimulus for the Formation of Hypoxic Tolerance in the Brain. Neurosci Behav Physi 53, 1242–1254 (2023). https://doi.org/10.1007/s11055-023-01520-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01520-7

Keywords

Navigation