Skip to main content

Advertisement

Log in

Immunopatological and Genetic Aspects of the Pathogenesisof CNS Lesions in VZV Infection

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This review presents data on the characteristics of the varicella-zoster virus (VZV), the clinical manifestations of CNS lesions in acute and chronic VZV infection in children and adults, and the mechanisms of interaction of the pathogen with the immune system during development of disease. The question of whether neurological disorders in VZV infection should be regarded as a complication or a manifestation of the disease, caused by a defective virus or the presence of subclinical immunodeficiency – as has been confirmed by contemporary scientific studies – is discussed. The critical mechanisms of immune defense against VZV, the main cause of penetration of the virus into the CNS and the development of neurological disorders, and the relationship between VZV genotypes and the presence of mutations in the gE gene and the nature of the course of illness are described; the review also addresses detection of rare variants of the POLR3A, POLR3C, POLR3E, and POLR3F genes, which are associated with impaired interferon induction and the development of severe VZV infection, in which vasculopathy also occurs and is the basis for the use of complex vascular drugs such as Cytoflavin, whose efficacy has been evidenced by the authors. Particular emphasis is given to analysis of intrathecal immunopathogenesis, which may be associated with the presence and severity of neurological manifestations. The causes of severe disease in patients vaccinated against chicken pox are discussed, along with resistance to specific antiviral drugs, which is probably associated with mutations responsible for therapeutic resistance of the virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skripchenko, E. Yu., Ivanova, G. P., Lobzin, Yu. V., et al., “Neurological complications in chickenpox: diagnosis and management tactics,” in: Neuroinfections in Children, Skripchenko, N. V. (ed.), Taktik-Studio, St. Petersburg (2015), pp. 349–394.

  2. Weinmann, S., Chun, C., Schmid, D., et al., “Incidence and clinical characteristics of herpes zoster among children in the varicella vaccine era, 2005–2009,” J. Infect. Dis., 208, No. 11, 1859–1868 (2013), https://doi.org/10.1093/infdis/jit405.

    Article  PubMed  Google Scholar 

  3. Rodríguez-Fanjul, X., Noguera, A., Vicente, A., et al., “Herpes zoster in healthy infants and toddlers after perinatal exposure to varicella-zoster virus: a case series and review of the literature,” Pediatr. Infect. Dis. J., 29, No. 6, 574–576 (2010), https://doi.org/10.1097/INF.0b013e3181d76f7f.

    Article  PubMed  Google Scholar 

  4. Sabitov, A. U., Fomin, V. V., and Sharova, A. A., “Immunopathogenesis of chickenpox, “Ural. Med. Zh., 6, No. 111, 8–14 (2013).

    Google Scholar 

  5. Zheleznikova, G. F., Skripchenko, N. V., and Skripchenko, E. Y., “Varicella-zoster herpes virus and the immune response,” Ros. Immunol. Zhurn., 7, No. 16, 35–48 (2013).

    Google Scholar 

  6. Lavrov, V. F., Svitich, O. A., Kazanova, A. S., et al., “Varicella zoster virus infection: immunity, diagnosis, and in vivo modeling,” Zh. Mikrobiol. Epidemiol. Immunobiol., 4, 82–89 (2019).

    Article  Google Scholar 

  7. Laing, K., Ouwendijk, W., Koelle, D., et al., “Immunobiology of varicella-zoster virus infection,” J. Infect. Dis., 218, Suppl. 2, S68–S74 (2018), https://doi.org/10.1093/infdis/jiy403.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sorel, O. and Messaoudi I., “Insights into the pathogenesis of varicella viruses,” Curr. Clin. Microbiol. Rep., 6, No. 3, 156–165 (2019), https://doi.org/10.1007/s40588-019-00119-2.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Grahn, A. and Studahl M., “Varicella-zoster virus infections of the central nervous system – Prognosis, diagnostics and treatment,” J. Infect., 71, No. 3, 281–293 (2015), https://doi.org/10.1016/j.jinf.2015.06.004.

    Article  PubMed  Google Scholar 

  10. Rack, A., Grote, V., Streng, A., et al., “Neurologic varicella complications before routine immunization in Germany,” Pediatr. Neurol., 42, No. 1, 40–48 (2010), https://doi.org/10.1016/j.pediatrneurol.2009.07.012.

    Article  PubMed  Google Scholar 

  11. Kazanova, A. S., Lavrov, V. F., and Zverev, V. V., “Varicella-Zoster virus and vascular diseases of the central nervous system,” Zh. Mikrobiol., 3, 106–116 (2015).

    Google Scholar 

  12. Skripchenko, N. V., “Effectiveness of cytoflavin in disseminated encephalomyelitis in children,” Zh. Nevrol. Psikhiatr., 11, No. 2, 67–74 (2017), https://doi.org/10.17116/jnevro201711711267-74.

  13. Heusel, E. and Grose C., “Twelve children with varicella vaccine meningitis: neuropathogenesis of reactivated live attenuated varicella vaccine virus,” Viruses, 12, No. 10, 1078 (2020), https://doi.org/10.3390/v12101078.

    Article  CAS  Google Scholar 

  14. Oliver, S., Zhou, M., and Arvin A., “Varicella-zoster virus: molecular controls of cell fusion-dependent pathogenesis,” Biochem. Soc. Trans., 48, No. 6, 2415–2435 (2020), https://doi.org/10.1042/BST20190511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nikzad, R., Angelo, L., Aviles-Padilla, K., et al., “Human natural killer cells mediate adaptive immunity to viral antigens,” Sci. Immunol., 4, No. 35, eaat8116 (2019), https://doi.org/10.1126/sciimmunol.aat8116.

  16. Eberhardt, C., Wieland, A., Nasti, T., et al., “Persistence of varicella-zoster virus-specific plasma cells in adult human bone marrow following childhood vaccination,” J. Virol., 94, No. 13, e02127-19 (2020), https://doi.org/10.1128/JVI.02127-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sen, N., Sung, P., Panda, A., and Arvin A., “Distinctive roles for type I and type II interferons and interferon regulatory factors in the host cell defense against varicella-zoster virus,” J. Virol., 92, No. 21, e01151-18 (2018), https://doi.org/10.1128/JVI.01151-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Horien, C. and Grose C., “Neurovirulence of varicella and the live attenuated varicella vaccine virus,” Semin. Ped. Neurol., 19, No. 3, 124–129 (2012), https://doi.org/10.1016/j.spen.2012.02.006.

    Article  Google Scholar 

  19. Vossen, M., Biezeveld, M., de Jong, M., et al., “Absence of circulating natural killer and primed CD8+ cells in life-threatening varicella,” J. Infect. Dis., 191, No. 2, 198–206 (2005), https://doi.org/10.1086/426866.

    Article  CAS  PubMed  Google Scholar 

  20. Karadag, O., Kara, A., Celik, M., et al., “Determination and clinical correlation of markers of inflammation in unvaccinated patients with varicella-zoster infection,” Eur. Rev. Med. Pharmacol. Sci., 17, No. 15, 2032–2039 (2013).

    Google Scholar 

  21. Saburova, O. A., Butina T. Yu, Ryumin, A. M., et al., “Immunological criteria for prognosticating severe and complicated forms of chickenpox,” Sovrem. Tekhnol. Med., 12, No. 4, 48–54 (2020), https://doi.org/10.17691/stm2020.12.4.06.

  22. Kennedy, P. and Mogensen T., “Determinants of neurological syndromes caused by varicella zoster virus (VZV),” J. Neurovirol., 26, No. 4, 482–495 (2020), https://doi.org/10.1007/s13365-020-00857-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sharova, A. A. and Sabitov, A. U., “Clinical and immunological features of severe CP with CNS lesions in children,” Sist. Integr. Zdravookhr., 11, No. 1, 23–33 (2011).

    Google Scholar 

  24. Zheleznikova, G. F., Lobzin, Yu. V., and Skripchenko, N. V., et al., “Clinical significance of serum cytokine levels in chickenpox in children,” Infekts. Immun., 5, No. 1, 79–84 (2015), https://doi.org/10.15789/2220-7619-2015-1-79-84.

  25. Bozzola, E., Carsetti, R., Mortari, E., et al., “The link between varicella and immune system: which children will develop acute cerebellitis?” Ital. J. Pediatr., 46, No. 1, 75–79 (2020), https://doi.org/10.1186/s13052-020-00840-5.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Steain, M., Sutherland, J., Rodriguez, M., et al., “Analysis of T cell responses during active varicella-zoster virus reactivation in human ganglia,” J. Virol., 88, No. 5, 2704–2716 (2014), https://doi.org/10.1128/JVI.03445-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schub, D., Janssen, E., Leyking, S., et al., “Altered phenotype and functionality of varicella zoster virus-specific cellular immunity in individuals with active infection,” J. Infect. Dis., 211, No. 4, 600–612 (2015), https://doi.org/10.1093/infdis/jiu500.

    Article  CAS  PubMed  Google Scholar 

  28. Schub, D., Fousse, M., Faßbender, K., et al., “CTLA-4-expression on VZV-specific T cells in CSF and blood is specifically increased in patients with VZV related central nervous system infections,” Eur. J. Immunol., 48, No. 1, 151–160 (2018), https://doi.org/10.1002/eji.201747079.

    Article  CAS  PubMed  Google Scholar 

  29. Lind, L., Eriksson, K., and Grahn A., “Chemokines and matrix metalloproteinases in cerebrospinal fluid of patients with central nervous system complications caused by varicella-zoster virus,” J. Neuroinflammation, 16, No. 1, 42 (2019), https://doi.org/10.1186/s12974-019-1428-1.

  30. Casanova, J. L., “Severe infectious diseases of childhood as monogenic inborn errors of immunity,” Proc. Natl. Acad. Sci. USA, 112, No. 51, E7128-37 (2015), https://doi.org/10.1073/pnas.1521651112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ogunjimi, B., Zhang, S. Y., Sørensen, K., et al., “Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections,” J. Clin. Invest., 127, No. 9, 3543–3556 (2017), https://doi.org/10.1172/JCI92280.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Carter-Timofte, M., Hansen, A., Christiansen, M., et al., “Mutations in RNA polymerase III genes and defective DNA sensing in adults with varicella-zoster virus CNS infection,” Genes Immun., 20, No. 3, 214–223 (2019), https://doi.org/10.1038/s41435-018-0027-y.

    Article  CAS  PubMed  Google Scholar 

  33. Rottenstreich, A., Oz, Z., and Oren I., “Association between viral load of varicella zoster virus in cerebrospinal fluid and the clinical course of central nervous system infection,” Diagn. Microbiol. Infect. Dis., 79, No. 2, 174–177 (2014), https://doi.org/10.1016/j.diagmicrobio.2014.02.015.

    Article  CAS  PubMed  Google Scholar 

  34. Grahn, A., Bergström, T., Runesson, J., and Studahl M., “Varicellazoster virus (VZV) DNA in serum of patients with VZV central nervous system infections,” J. Infect., 73, No. 3, 254–260 (2016), https://doi.org/10.1016/j.jinf.2016.04.035.

    Article  PubMed  Google Scholar 

  35. Campbell, T., McSharry, B., Steain, M., et al., “Functional paralysis of human natural killer cells by alphaherpesviruses,” PLoS Pathog., 15, No. 6, e1007784 (2019), https://doi.org/10.1371/journal.ppat.1007784.

  36. Gerada, C., Campbell, T., Kennedy, J., et al., “Manipulation of the innate immune response by varicella zoster virus,” Front. Immunol., 11, 1–17 (2020), https://doi.org/10.3389/fimmu.2020.00001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gerada, C., Steain, M., Campbell, T., et al., “Granzyme B cleaves multiple herpes simplex virus 1 and varicella-zoster virus (VZV) gene products, and VZV ORF4 inhibits natural killer cell cytotoxicity,” J. Virol., 93, No. 22, e01140-19 (2019), https://doi.org/10.1128/JVI.01140-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zerboni, L., Sen, N., Oliver, S., and Arvin A., “Molecular mechanisms of varicella zoster virus pathogenesis,” Nat. Rev. Microbiol., 12, No. 3, 197–210 (2014), https://doi.org/10.1038/nrmicro3215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mahalingam, R., Gershon, A., Gershon, M., et al., “Current in vivo models of varicella-zoster virus neurotropism,” Viruses, 11, No. 6, 502 (2019), https://doi.org/10.3390/v11060502.

    Article  CAS  Google Scholar 

  40. Suenaga, T., Matsumoto, M., Arisawa, F., et al., “Sialic acids on varicella-zoster virus glycoprotein B are required for cell-cell fusion,” J. Biol. Chem., 290, No. 32, 19833–19843 (2015), https://doi.org/10.1074/jbc.M114.635508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pugazhenthi, S., Nair, S., Velmurugan, K., et al., “Varicella-zoster virus infection of differentiated human neural stem cells,” J. Virol., 85, No. 13, 6678–6686 (2011), https://doi.org/10.1128/JVI.00445-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Selariu, A., Cheng, T., Tang, Q., et al., “ORF7 of varicella-zoster virus is a neurotropic factor,” J. Virol., 86, No. 16, 8614–8624 (2012), https://doi.org/10.1128/JVI.00128-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Santos, R., Padilla, J., Hatfield, C., and Grose C., “Antigenic variation of varicella zoster virus Fc receptor gE: loss of a major B cell epitope in the ectodomain,” Virology, 249, No. 1, 21–31 (1998), https://doi.org/10.1006/viro.1998.9313.

    Article  CAS  PubMed  Google Scholar 

  44. Santos, R., Hatfield, C., Cole, N., et al., “Varicella-zoster virus gE escape mutant VZV-MSP exhibits an accelerated cell-to-cell spread phenotype in both infected cell cultures and SCID-hu mice,” Virology, 275, No. 2, 306–317 (2000), https://doi.org/10.1006/viro.2000.0507.

    Article  CAS  PubMed  Google Scholar 

  45. Grose, C., Tyler, S., Peters, G., et al., “Complete DNA sequence analyses of the first two varicella-zoster virus glycoprotein E (D150N) mutant viruses found in North America: evolution of genotypes with an accelerated cell spread phenotype,” J. Virol., 78, No. 13, 6799–6807 (2004), https://doi.org/10.1128/JVI.78.13.6799-6807.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Natoli, S., Ciotti, M., Paba, P., et al., “A novel mutation of varicella-zoster virus associated to fatal hepatitis,” J. Clin. Virol., 37, No. 1, 72–74 (2006), https://doi.org/10.1016/j.jcv.2006.06.004.

    Article  CAS  PubMed  Google Scholar 

  47. Schmidt-Chanasit, J., Bleymehl, K., Schäd, S., et al., “Novel varicella-zoster virus glycoprotein E gene mutations associated with genotypes A and D,” J. Clin. Microbiol., 46, No. 1, 325–327 (2008), https://doi.org/10.1128/JCM.01735-07.

    Article  CAS  PubMed  Google Scholar 

  48. Loparev, V., Rubtcova, E., Bostik, V., et al., “Distribution of varicella-zoster virus (VZV) wild-type genotypes in northern and southern Europe: evidence for high conservation of circulating genotypes,” Virology, 383, No. 2, 216–225 (2009), https://doi.org/10.1016/j.virol.2008.10.026.

    Article  CAS  PubMed  Google Scholar 

  49. Sauerbrei, A., Bohn, K., Zell, R., and Wutzler P., “Variability of immediate-early gene 62 in German varicella-zoster virus wild-type strains,” J. Clin. Microbiol., 47, No. 11, 3717–3720 (2009), https://doi.org/10.1128/JCM.01550-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Breuer, J., Grose, C., Norberg, P., et al., “A proposal for a common nomenclature for viral clades that form the species varicella-zoster virus: summary of VZV Nomenclature Meeting 2008, Barts and the London School of Medicine and Dentistry, 24–25 July 2008,” J. Gen. Virol., 91, Pt. 4, 821–828 (2010), https://doi.org/10.1099/vir.0.017814-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zell, R., Taudien, S., Pfaff, F., et al., “Sequencing of 21 varicella-zoster virus genomes reveals two novel genotypes and evidence of recombination,” J. Virol., 86, No. 3, 1608–1622 (2012), https://doi.org/10.1128/JVI.06233-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Norberg, P., Depledge, D., Kundu, S., et al., “Recombination of globally circulating varicella-zoster virus,” J. Virol., 89, No. 14, 7133–7146 (2015), https://doi.org/10.1128/JVI.00437-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jensen, N., Rivailler, P., Tseng, H., et al., “Revisiting the genotyping scheme for varicella-zoster viruses based on whole-genome comparisons,” J. Gen. Virol., 98, No. 6, 1434–1438 (2017), https://doi.org/10.1099/jgv.0.000772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sauerbrei, A., Wiesener, N., Zell, R., and Wutzler P., “Sequence analysis of the glycoprotein E gene of varicella-zoster virus strains of clades 1, 3 and 5,” Arch. Virol., 156, No. 3, 505–509 (2011), https://doi.org/10.1007/s00705-010-0864-0.

    Article  CAS  PubMed  Google Scholar 

  55. Breuer J., “Molecular genetic insights into varicella zoster virus (VZV), the vOka vaccine strain, and the pathogenesis of latency and reactivation,” J. Infect. Dis., 218, No. 2, S75–S80 (2018), https://doi.org/10.1093/infdis/jiy279.

    Article  PubMed  Google Scholar 

  56. Pontremoli, C., Forni, D., Clerici, M., et al., “Possible European origin of circulating varicella zoster virus strains,” J. Infect. Dis., 221, No. 8, 1286–1294 (2020), https://doi.org/10.1093/infdis/jiz227.

    Article  PubMed  Google Scholar 

  57. Beby-Defaux, A., Brabant, S., Chatellier, D., et al., “Disseminated varicella with multiorgan failure in an immunocompetent adult,” J. Med. Virol., 81, No. 4, 747–749 (2009), https://doi.org/10.1002/jmv.21447.

    Article  PubMed  Google Scholar 

  58. Springfeld, C., Sauerbrei, A., Filusch, A., et al., “Fatal varicella in an immunocompromised adult associated with a European genotype E2 variant of varicella zoster virus,” J. Clin. Virol., 44, No. 1, 70–73 (2009), https://doi.org/10.1016/j.jcv.2008.10.004.

    Article  CAS  PubMed  Google Scholar 

  59. Plisek, S., Pliskova, L., Bostik, V., et al., “Fulminant hepatitis and death associated with disseminated varicella in an immunocompromised adult from the Czech Republic caused by a wild-type clade 4 varicella-zoster virus strain,” J. Clin. Virol., 50, No. 1, 72–75 (2011), https://doi.org/10.1016/j.jcv.2010.09.014.

    Article  PubMed  Google Scholar 

  60. Piret, J. and Boivin G., “Antiviral resistance in herpes simplex virus and varicella-zoster virus infections: diagnosis and management,” Curr. Opin. Infect. Dis., 29, No. 6, 654–662 (2016), https://doi.org/10.1097/QCO.0000000000000288.

    Article  CAS  PubMed  Google Scholar 

  61. Gueudry, J., Boutolleau, D., Gueudin, M., et al., “Acyclovir-resistant varicella-zoster virus keratitis in an immunocompetent patient,” J. Clin. Virol., 58, No. 1, 318–320 (2013), https://doi.org/10.1016/j.jcv.2013.04.024.

    Article  CAS  PubMed  Google Scholar 

  62. van der Beek, M., Vermont, C., Bredius, R., et al., “Persistence and antiviral resistance of varicella zoster virus in hematological patients,” Clin. Infect. Dis., 56, No. 3, 335–343 (2013), https://doi.org/10.1093/cid/cis879.

    Article  CAS  PubMed  Google Scholar 

  63. Hoffmann, A., Döring, K., Seeger, N., et al., “Genetic polymorphism of thymidine kinase (TK) and DNA polymerase (pol) of clinical varicella-zoster virus (VZV) isolates collected over three decades,” J. Clin. Virol., 95, 61–65 (2017), https://doi.org/10.1016/j.jcv.2017.08.011.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Skripchenko.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 122, No. 10, pp. 46–56, October, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skripchenko, E.Y., Zheleznikova, G.F., Skripchenko, N.V. et al. Immunopatological and Genetic Aspects of the Pathogenesisof CNS Lesions in VZV Infection. Neurosci Behav Physi 53, 801–811 (2023). https://doi.org/10.1007/s11055-023-01472-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01472-y

Keywords

Navigation