Skip to main content

Advertisement

Log in

Insights into the Pathogenesis of Varicella Viruses

  • Virology (A Nicola, Section Editor)
  • Published:
Current Clinical Microbiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Varicella-zoster virus (VZV) is a highly contagious, neurotropic alpha-herpes virus that causes varicella (chickenpox). VZV establishes lifelong latency in the sensory ganglia from which it can reactivate to induce herpes zoster (HZ), a painful disease that primarily affects older individuals and those who are immune-suppressed. Given that VZV infection is highly specific to humans, developing a reliable in vivo model that recapitulates the hallmarks of VZV infection has been challenging. Simian varicella virus (SVV) infection in non-human primates reproduces the cardinal features of VZV infections in humans and allows the study of varicella virus pathogenesis in the natural host. In this review, we summarize our current knowledge about genomic and virion structure of varicelloviruses as well as viral pathogenesis and antiviral immune responses during acute infection, latency, and reactivation. We also examine the immune evasion mechanisms developed by varicelloviruses to escape the host immune responses and the current vaccines available for protecting individuals against chickenpox and herpes zoster.

Recent Findings

Data from recent studies suggest that infected T cells are important for viral dissemination to the cutaneous sites of infection as well as the site of latency and that a viral latency-associated transcript might play a role in the transition from lytic infection to latency and then reactivation.

Summary

Recent studies have provided exciting insights into mechanisms of varicelloviruses pathogenesis such as the critical role of T cells in VZV/SVV dissemination from the respiratory mucosa to the skin and the sensory ganglia; the ability of VZV/SVV to interfere with host defense; and the identification of VLT transcripts in latently infected ganglia. However, our understanding of these phenomena remains poorly understood. Therefore, it is critical that we continue to investigate host-pathogen interactions during varicelloviruses infection. These studies will lead to a deeper understanding of VZV biology as well as novel aspects of cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. McGeoch DJ, Rixon FJ, Davison AJ. Topics in herpesvirus genomics and evolution. Virus Res. 2006;117(1):90–104.

    Article  CAS  PubMed  Google Scholar 

  2. White TM, Gilden DH, Mahalingam R. An animal model of varicella virus infection. Brain Pathol (Zurich, Switzerland). 2001;11(4):475–9.

    Article  CAS  Google Scholar 

  3. Suzuki K, Yoshikawa T, Tomitaka A, Matsunaga K, Asano Y. Detection of aerosolized varicella-zoster virus DNA in patients with localized herpes zoster. J Infect Dis. 2004;189(6):1009–12.

    Article  PubMed  Google Scholar 

  4. Sawyer MH, Chamberlin CJ, Wu YN, Aintablian N, Wallace MR. Detection of varicella-zoster virus DNA in air samples from hospital rooms. J Infect Dis. 1994;169(1):91–4.

    Article  CAS  PubMed  Google Scholar 

  5. Leclair JM, Zaia JA, Levin MJ, Congdon RG, Goldmann DA. Airborne transmission of chickenpox in a hospital. N Engl J Med. 1980;302(8):450–3.

    Article  CAS  PubMed  Google Scholar 

  6. Zerboni L, Sen N, Oliver SL, Arvin AM. Molecular mechanisms of varicella zoster virus pathogenesis. Nat Rev Microbiol. 2014;12(3):197–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gray WL. Simian varicella in old world monkeys. Comp Med. 2008;58(1):22–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Haberthur K, Messaoudi I. Animal models of varicella zoster virus infection. Pathogens (Basel, Switzerland). 2013;2(2):364–82.

    Google Scholar 

  9. Sorel O, Messaoudi I. Varicella virus-host interactions during latency and reactivation: lessons from simian varicella virus. Front Microbiol. 2018;9:3170.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ouwendijk WJ, Verjans GM. Pathogenesis of varicelloviruses in primates. J Pathol. 2015;235(2):298–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Haberthur K, Engelmann F, Park B, Barron A, Legasse A, Dewane J, et al. CD4 T cell immunity is critical for the control of simian varicella virus infection in a nonhuman primate model of VZV infection. PLoS Pathog. 2011;7(11):e1002367.

  12. Traina-Dorge V, Mehta S, Rooney B, Crucian B, Doyle-Meyers L, Das A, et al. Simian varicella virus DNA in saliva and buccal cells after experimental acute infection in Rhesus Macaques. Front Microbiol. 2019;10(1009). https://doi.org/10.3389/fmicb.2019.01009.

  13. Gray WL. Simian varicella virus: molecular virology. Curr Top Microbiol Immunol. 2010;342:291–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gray WL, Oakes JE. Simian varicella virus DNA shares homology with human varicella-zoster virus DNA. Virology. 1984;136(1):241–6.

    Article  CAS  PubMed  Google Scholar 

  15. Mahalingam R, Gilden DH. Simian varicella virus. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, et al., editors. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge: Cambridge University Press; 2007.

    Google Scholar 

  16. Gray WL, Starnes B, White MW, Mahalingam R. The DNA sequence of the simian varicella virus genome. Virology. 2001;284(1):123–30.

    Article  CAS  PubMed  Google Scholar 

  17. Heininger U, Seward JF, et al. Lancet (London, England). 2006;368(9544):1365–76.

    Article  Google Scholar 

  18. Chiner E, Ballester I, Betlloch I, Blanquer J, Aguar MC, Blanquer R, et al. Varicella-zoster virus pneumonia in an adult population: has mortality decreased? Scand J Infect Dis. 2010;42(3):215–21.

  19. Gnann JW Jr. Varicella-zoster virus: atypical presentations and unusual complications. J Infect Dis. 2002;186(Suppl 1):S91–8.

    Article  PubMed  Google Scholar 

  20. Wiegering V, Schick J, Beer M, Weissbrich B, Gattenlohner S, Girschick HJ, et al. Varicella-zoster virus infections in immunocompromised patients—a single centre 6-years analysis. BMC Pediatr. 2011;11:31.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Roberts ED, Baskin GB, Soike K, Gibson SV. Pathologic changes of experimental simian varicella (Delta herpesvirus) infection in African green monkeys (Cercopithecus aethiops). Am J Vet Res. 1984;45(3):523–30.

    CAS  PubMed  Google Scholar 

  22. White TM, Mahalingam R, Traina-Dorge V, Gilden DH. Persistence of simian varicella virus DNA in CD4(+) and CD8(+) blood mononuclear cells for years after intratracheal inoculation of African green monkeys. Virology. 2002;303(1):192–8.

    Article  CAS  PubMed  Google Scholar 

  23. White TM, Mahalingam R, Traina-Dorge V, Gilden DH. Simian varicella virus DNA is present and transcribed months after experimental infection of adult African green monkeys. J Neuro-Oncol. 2002;8(3):191–203.

    CAS  Google Scholar 

  24. Messaoudi I, Barron A, Wellish M, Engelmann F, Legasse A, Planer S, et al. Simian varicella virus infection of rhesus macaques recapitulates essential features of varicella zoster virus infection in humans. PLoS Pathog. 2009;5(11):e1000657.

  25. Meyer C, Kerns A, Barron A, Kreklywich C, Streblow DN, Messaoudi I. Simian varicella virus gene expression during acute and latent infection of rhesus macaques. J Neuro-Oncol. 2011;17(6):600–12.

    CAS  Google Scholar 

  26. Haberthur K, Meyer C, Arnold N, Engelmann F, Jeske DR, Messaoudi I. Intrabronchial infection of rhesus macaques with simian varicella virus results in a robust immune response in the lungs. J Virol. 2014;88(21):12777–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. • Ouwendijk WJD, van Veen S, Mehraban T, Mahalingam R, Verjans G. Simian varicella virus infects enteric neurons and alpha4beta7 integrin-expressing gut-tropic T-cells in nonhuman primates. Viruses. 2018;10(4). https://doi.org/10.3390/v10040156. The data demonstrates that SVV infects ENS neurons during primary infection and supports the role of T-cells in virus dissemination to the gut.

  28. Moffat JF, Stein MD, Kaneshima H, Arvin AM. Tropism of varicella-zoster virus for human CD4+ and CD8+ T lymphocytes and epidermal cells in SCID-hu mice. J Virol. 1995;69(9):5236–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Moffat JF, Zerboni L, Kinchington PR, Grose C, Kaneshima H, Arvin AM. Attenuation of the vaccine Oka strain of varicella-zoster virus and role of glycoprotein C in alphaherpesvirus virulence demonstrated in the SCID-hu mouse. J Virol. 1998;72(2):965–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ito H, Sommer MH, Zerboni L, He H, Boucaud D, Hay J, et al. Promoter sequences of varicella-zoster virus glycoprotein I targeted by cellular transactivating factors Sp1 and USF determine virulence in skin and T cells in SCIDhu mice in vivo. J Virol. 2003;77(1):489–98.

  31. Arvin A, Gershon A. Control of varicella: why is a two-dose schedule necessary? Pediatr Infect Dis J. 2006;25(6):475–6.

    Article  PubMed  Google Scholar 

  32. Ku C-C, Besser J, Abendroth A, Grose C, Arvin AM. Varicella-zoster virus pathogenesis and immunobiology: new concepts emerging from investigations with the SCIDhu mouse model. J Virol. 2005;79(5):2651–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. •• Arnold N, Messaoudi I. Simian varicella virus causes robust transcriptional changes in T cells that support viral replication. Virus Res. 2017;15(238):226–35 SVV Targets T cells and alters expression of genes important for regulation of gene expression, cell cycle progression, metabolism, and antiviral immunity.

    Article  CAS  Google Scholar 

  34. •• Arnold N, Girke T, Sureshchandra S, Messaoudi I. Acute simian varicella virus infection causes robust and sustained changes in gene expression in the sensory ganglia. J Virol. 2016;90(23):10823–43 These studies provide novel insights into host-pathogen interactions in the sensory ganglia during acute varicella and demonstrate that SVV infection results in profound and sustained changes in neuronal gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ku CC, Padilla JA, Grose C, Butcher EC, Arvin AM. Tropism of varicella-zoster virus for human tonsillar CD4(+) T lymphocytes that express activation, memory, and skin homing markers. J Virol. 2002;76(22):11425–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ku C-C, Zerboni L, Ito H, Graham BS, Wallace M, Arvin AM. Varicella-zoster virus transfer to skin by T cells and modulation of viral replication by epidermal cell interferon-{alpha}. J Exp Med. 2004;200(7):917–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zerboni L, Ku CC, Jones CD, Zehnder JL, Arvin AM. Varicella-zoster virus infection of human dorsal root ganglia in vivo. Proc Natl Acad Sci U S A. 2005;102(18):6490–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sen N, Mukherjee G, Sen A, Bendall SC, Sung P, Nolan GP, et al. Single-cell mass cytometry analysis of human tonsil T cell remodeling by varicella zoster virus. Cell Rep. 2014;8(2):633–45.

  39. Ouwendijk WJ, Mahalingam R, de Swart RL, Haagmans BL, van Amerongen G, Getu S, et al. T-cell tropism of simian varicella virus during primary infection. PLoS Pathog. 2013;9(5):e1003368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moffat JF, Zerboni L, Sommer MH, Heineman TC, Cohen JI, Kaneshima H, et al. The ORF47 and ORF66 putative protein kinases of varicella-zoster virus determine tropism for human T cells and skin in the SCID-hu mouse. Proc Natl Acad Sci U S A. 1998;95(20):11969–74.

  41. Schaap-Nutt A, Sommer M, Che X, Zerboni L, Arvin AM. ORF66 protein kinase function is required for T-cell tropism of varicella-zoster virus in vivo. J Virol. 2006;80(23):11806–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schaap A, Fortin JF, Sommer M, Zerboni L, Stamatis S, Ku CC, et al. T-cell tropism and the role of ORF66 protein in pathogenesis of varicella-zoster virus infection. J Virol. 2005;79(20):12921–33.

  43. Zerboni L, Ku C-C, Jones CD, Zehnder JL, Arvin AM. Varicella-zoster virus infection of human dorsal root ganglia in vivo. Proc Natl Acad Sci. 2005;102(18):6490–5.

    Article  CAS  PubMed  Google Scholar 

  44. Jones JO, Arvin AM. Microarray analysis of host cell gene transcription in response to varicella-zoster virus infection of human T cells and fibroblasts in vitro and SCIDhu skin xenografts in vivo. J Virol. 2003;77(2):1268–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sen N, Che X, Rajamani J, Zerboni L, Sung P, Ptacek J, et al. Signal transducer and activator of transcription 3 (STAT3) and survivin induction by varicella-zoster virus promote replication and skin pathogenesis. Proc Natl Acad Sci U S A. 2012;109(2):600–5.

  46. •• Ouwendijk WJ, Getu S, Mahalingam R, Gilden D, Osterhaus AD, Verjans GM. Characterization of the immune response in ganglia after primary simian varicella virus infection. J Neurovirol. 2016;22(3):376–88 Immune response in the ganglia after primary SVV infection: local immune responses emerged as viral DNA load in ganglia declined, suggesting that intra-ganglionic immunity contributes to restricting SVV replication.

  47. Moffat J, Ito H, Sommer M, Taylor S, Arvin AM. Glycoprotein I of varicella-zoster virus is required for viral replication in skin and T cells. J Virol. 2002;76(16):8468–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Berarducci B, Rajamani J, Zerboni L, Che X, Sommer M, Arvin AM. Functions of the unique N-terminal region of glycoprotein E in the pathogenesis of varicella-zoster virus infection. Proc Natl Acad Sci U S A. 2010;107(1):282–7.

    Article  PubMed  Google Scholar 

  49. Sen N, Mukherjee G, Arvin AM. Single cell mass cytometry reveals remodeling of human T cell phenotypes by varicella zoster virus. Methods. 2015;90:85–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yamanishi K. Molecular analysis of the Oka vaccine strain of varicella-zoster virus. J Infect Dis. 2008;197(Suppl 2):S45–8.

    Article  CAS  PubMed  Google Scholar 

  51. Vleck SE, Oliver SL, Brady JJ, Blau HM, Rajamani J, Sommer MH, et al. Structure-function analysis of varicella-zoster virus glycoprotein H identifies domain-specific roles for fusion and skin tropism. Proc Natl Acad Sci U S A. 2011;108(45):18412–7.

  52. Oliver SL, Sommer M, Zerboni L, Rajamani J, Grose C, Arvin AM. Mutagenesis of varicella-zoster virus glycoprotein B: putative fusion loop residues are essential for viral replication, and the furin cleavage motif contributes to pathogenesis in skin tissue in vivo. J Virol. 2009;83(15):7495–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Besser J, Ikoma M, Fabel K, Sommer MH, Zerboni L, Grose C, et al. Differential requirement for cell fusion and virion formation in the pathogenesis of varicella-zoster virus infection in skin and T cells. J Virol. 2004;78(23):13293–305.

  54. Besser J, Sommer MH, Zerboni L, Bagowski CP, Ito H, Moffat J, et al. Differentiation of varicella-zoster virus ORF47 protein kinase and IE62 protein binding domains and their contributions to replication in human skin xenografts in the SCID-hu mouse. J Virol. 2003;77(10):5964–74.

  55. • Zerboni L, Sung P, Sommer M, Arvin A. The C-terminus of varicella-zoster virus glycoprotein M contains trafficking motifs that mediate skin virulence in the SCID-human model of VZV pathogenesis. Virology. 2018;523:110–20 Eng. Virology – This study identified motifs contained in glycoprotein M that mediate skin virulence in the SCID-human model of VZV pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  56. Nikkels AF, Sadzot-Delvaux C, Pierard GE. Absence of intercellular adhesion molecule 1 expression in varicella zoster virus-infected keratinocytes during herpes zoster: another immune evasion strategy? Am J Dermatopathol. 2004;26(1):27–32.

    Article  PubMed  Google Scholar 

  57. Stevens DA, Ferrington RA, Jordan GW, Merigan TC. Cellular events in zoster vesicles: relation to clinical course and immune parameters. J Infect Dis. 1975;131(5):509–15.

    Article  CAS  PubMed  Google Scholar 

  58. Huch JH, Cunningham AL, Arvin AM, Nasr N, Santegoets SJ, Slobedman E, et al. Impact of varicella-zoster virus on dendritic cell subsets in human skin during natural infection. J Virol. 2010;84(8):4060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Reichelt M, Wang L, Sommer M, Perrino J, Nour AM, Sen N, et al. Entrapment of viral capsids in nuclear PML cages is an intrinsic antiviral host defense against varicella-zoster virus. PLoS Pathog. 2011;7(2):e1001266.

  60. •• Arnold N, Girke T, Sureshchandra S, Nguyen C, Rais M, Messaoudi I. Genomic and functional analysis of the host response to acute simian varicella infection in the lung. Sci Rep. 2016;6:34164 These data provide the first characterization of the host response required to control varicella virus replication in the lung and provide insight into mechanisms by which VZV infection can cause lung injury in an immune competent host.

  61. Arvin AM, Koropchak CM, Williams BR, Grumet FC, Foung SK. Early immune response in healthy and immunocompromised subjects with primary varicella-zoster virus infection. J Infect Dis. 1986;154(3):422–9.

    Article  CAS  PubMed  Google Scholar 

  62. Malavige GN, Jones L, Black AP, Ogg GS. Varicella zoster virus glycoprotein E-specific CD4+ T cells show evidence of recent activation and effector differentiation, consistent with frequent exposure to replicative cycle antigens in healthy immune donors. Clin Exp Immunol. 2008;152(3):522–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Torigo S, Ihara T, Kamiya H. IL-12, IFN-gamma, and TNF-alpha released from mononuclear cells inhibit the spread of varicella-zoster virus at an early stage of varicella. Microbiol Immunol. 2000;44(12):1027–31.

    Article  CAS  PubMed  Google Scholar 

  64. Weinberg A, Lazar AA, Zerbe GO, Hayward AR, Chan IS, Vessey R, et al. Influence of age and nature of primary infection on varicella-zoster virus-specific cell-mediated immune responses. J Infect Dis. 2010;201(7):1024–30.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Schub D, Janssen E, Leyking S, Sester U, Assmann G, Hennes P, et al. Altered phenotype and functionality of varicella zoster virus-specific cellular immunity in individuals with active infection. J Infect Dis. 2015;211(4):600–12.

  66. Duncan CJ, Hambleton S. Varicella zoster virus immunity: a primer. J Infect. 2015;71(Suppl 1):S47–53.

    Article  PubMed  Google Scholar 

  67. Sen N, Arvin AM. Dissecting the molecular mechanisms of the tropism of varicella-zoster virus for human T cells. J Virol. 2016;90(7):3284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Weinberg A, Zhang JH, Oxman MN, Johnson GR, Hayward AR, Caulfield MJ, et al. Varicella-zoster virus-specific immune responses to herpes zoster in elderly participants in a trial of a clinically effective zoster vaccine. J Infect Dis. 2009;200(7):1068–77.

  69. • Sen N, Sung P, Panda A, Arvin AM. Distinctive Roles for Type I and Type II Interferons and Interferon Regulatory Factors in the Host Cell Defense against Varicella-Zoster Virus. J Virol. 2018;92(21): e01151–18. These findings account for the clinical experience of the initial control of VZV skin infection attributable to IFN-alpha production together with the requirement for induction of adaptive IFN-y-producing VZV-specific T cells to resolve the infection.

  70. Wilson A, Sharp M, Koropchak CM, Ting SF, Arvin AM. Subclinical varicella-zoster virus viremia, herpes zoster, and T lymphocyte immunity to varicella-zoster viral antigens after bone marrow transplantation. J Infect Dis. 1992;165(1):119–26.

    Article  CAS  PubMed  Google Scholar 

  71. Zerboni L, Nader S, Aoki K, Arvin AM. Analysis of the persistence of humoral and cellular immunity in children and adults immunized with varicella vaccine. J Infect Dis. 1998;177(6):1701–4.

    Article  CAS  PubMed  Google Scholar 

  72. Arvin AM, Pollard RB, Rasmussen LE, Merigan TC. Selective impairment of lymphocyte reactivity to varicella-zoster virus antigen among untreated patients with lymphoma. J Infect Dis. 1978;137(5):531–40.

    Article  CAS  PubMed  Google Scholar 

  73. Redman RL, Nader S, Zerboni L, Liu C, Wong RM, Brown BW, et al. Early reconstitution of immunity and decreased severity of herpes zoster in bone marrow transplant recipients immunized with inactivated varicella vaccine. J Infect Dis. 1997;176(3):578–85.

  74. Nader S, Bergen R, Sharp M, Arvin AM. Age-related differences in cell-mediated immunity to varicella-zoster virus among children and adults immunized with live attenuated varicella vaccine. J Infect Dis. 1995;171(1):13–7.

    Article  CAS  PubMed  Google Scholar 

  75. Arvin AM, Sharp M, Smith S, Koropchak CM, Diaz PS, Kinchington P, et al. Equivalent recognition of a varicella-zoster virus immediate early protein (IE62) and glycoprotein I by cytotoxic T lymphocytes of either CD4+ or CD8+ phenotype. J Immunol. 1991;146(1):257–64.

    CAS  PubMed  Google Scholar 

  76. Sadzot-Delvaux C, Kinchington PR, Debrus S, Rentier B, Arvin AM. Recognition of the latency-associated immediate early protein IE63 of varicella-zoster virus by human memory T lymphocytes. J Immunol. 1997;159(6):2802–6.

    CAS  PubMed  Google Scholar 

  77. Arvin AM, Sharp M, Moir M, Kinchington PR, Sadeghi-Zadeh M, Ruyechan WT, et al. Memory cytotoxic T cell responses to viral tegument and regulatory proteins encoded by open reading frames 4, 10, 29, and 62 of varicella-zoster virus. Viral Immunol. 2002;15(3):507–16.

  78. Haberthur K, Kraft A, Arnold N, Park B, Meyer C, Asquith M, et al. Genome-wide analysis of T cell responses during acute and latent simian varicella virus infections in rhesus macaques. J Virol. 2013;87(21):11751–61.

  79. James SF, Traina-Dorge V, Deharo E, Wellish M, Palmer BE, Gilden D, et al. T cells increase before zoster and PD-1 expression increases at the time of zoster in immunosuppressed nonhuman primates latently infected with simian varicella virus. J Neuro-Oncol. 2014;20(3):309–13.

    CAS  Google Scholar 

  80. Ceroni A, Sibani S, Baiker A, Pothineni VR, Bailer SM, LaBaer J, et al. Systematic analysis of the IgG antibody immune response against varicella zoster virus (VZV) using a self-assembled protein microarray. Mol BioSyst. 2010;6(9):1604–10.

  81. Webster AD, Spickett GP, Thomson BJ, Farrant J. Viruses and antibody deficiency syndromes. Immunol Investig. 1988;17(2):93–105.

    Article  CAS  Google Scholar 

  82. Steain M, Sutherland JP, Rodriguez M, Cunningham AL, Slobedman B, Abendroth A. Analysis of T cell responses during active varicella-zoster virus reactivation in human ganglia. J Virol. 2014;88(5):2704–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reichelt M, Zerboni L, Arvin AM. Mechanisms of varicella-zoster virus neuropathogenesis in human dorsal root ganglia. J Virol. 2008;82(8):3971–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Meyer C, Dewane J, Kerns A, Haberthur K, Barron A, Park B, et al. Age and immune status of rhesus macaques impact simian varicella virus gene expression in sensory ganglia. J Virol. 2013;87(15):8294–306.

  85. •• Arnold N, Meyer C, Engelmann F, Messaoudi I. Robust gene expression changes in the ganglia following subclinical reactivation in rhesus macaques infected with simian varicella virus. J Neurovirol. 2017;23(4):520–38 These studies support the critical role of cellular immunity in preventing varicella virus reactivation and indicate that reactivation results in long-lasting remodeling of the ganglia transcriptome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wareham DW, Breuer J. Herpes zoster. BMJ (Clinical research ed). 2007;334(7605):1211–5.

    Article  Google Scholar 

  87. Chen JJ, Gershon AA, Li Z, Cowles RA, Gershon MD. Varicella zoster virus (VZV) infects and establishes latency in enteric neurons. J Neuro-Oncol. 2011;17(6):578–89.

    CAS  Google Scholar 

  88. Depledge DP, Sadaoka T, Ouwendijk WJD. Molecular aspects of varicella-zoster virus latency. Viruses. 2018;10(7). https://doi.org/10.3390/v10070349.

  89. Wang K, Lau TY, Morales M, Mont EK, Straus SE. Laser-capture microdissection: refining estimates of the quantity and distribution of latent herpes simplex virus 1 and varicella-zoster virus DNA in human trigeminal ganglia at the single-cell level. J Virol. 2005;79(22):14079–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Levin MJ, Cai GY, Manchak MD, Pizer LI. Varicella-zoster virus DNA in cells isolated from human trigeminal ganglia. J Virol. 2003\;77(12):6979–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zerboni L, Berarducci B, Rajamani J, Jones CD, Zehnder JL, Arvin A. Varicella-zoster virus glycoprotein E is a critical determinant of virulence in the SCID mouse-human model of neuropathogenesis. J Virol. 2011;85(1):98–111.

    Article  CAS  PubMed  Google Scholar 

  92. Zerboni L, Sobel RA, Ramachandran V, Rajamani J, Ruyechan W, Abendroth A, et al. Expression of varicella-zoster virus immediate-early regulatory protein IE63 in neurons of latently infected human sensory ganglia. J Virol. 2010;84(7):3421–30.

  93. Mahalingam R, Wellish M, Cohrs R, Debrus S, Piette J, Rentier B, et al. Expression of protein encoded by varicella-zoster virus open reading frame 63 in latently infected human ganglionic neurons. Proc Natl Acad Sci U S A. 1996;93(5):2122–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cohrs RJ, Hurley MP, Gilden DH. Array analysis of viral gene transcription during lytic infection of cells in tissue culture with Varicella-Zoster virus. J Virol. 2003;77(21):11718–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Grinfeld E, Kennedy PG. Translation of varicella-zoster virus genes during human ganglionic latency. Virus Genes. 2004;29(3):317–9.

    Article  CAS  PubMed  Google Scholar 

  96. Kennedy PG, Grinfeld E, Bell JE. Varicella-zoster virus gene expression in latently infected and explanted human ganglia. J Virol. 2000;74(24):11893–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cohrs RJ, Gilden DH. Prevalence and abundance of latently transcribed varicella-zoster virus genes in human ganglia. J Virol. 2007;81(6):2950–6.

    Article  CAS  PubMed  Google Scholar 

  98. Lungu O, Panagiotidis CA, Annunziato PW, Gershon AA, Silverstein SJ. Aberrant intracellular localization of varicella-zoster virus regulatory proteins during latency. Proc Natl Acad Sci U S A. 1998;95(12):7080–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ou Y, Davis KA, Traina-Dorge V, Gray WL. Simian varicella virus expresses a latency-associated transcript that is antisense to open reading frame 61 (ICP0) mRNA in neural ganglia of latently infected monkeys. J Virol. 2007;81(15):8149–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. •• Depledge DP, Ouwendijk WJD, Sadaoka T, Braspenning SE, Mori Y, Cohrs RJ, et al. A spliced latency-associated VZV transcript maps antisense to the viral transactivator gene 61. Nat Commun. 2018;9(1):1167 First characterization of the VLT for VZV.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bloom DC. Alphaherpesvirus latency: a dynamic state of transcription and reactivation. Adv Virus Res. 2016;94:53–80.

    Article  CAS  PubMed  Google Scholar 

  102. Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature. 2008;454(7205):780–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jaber T, Workman A, Jones C. Small noncoding RNAs encoded within the bovine herpesvirus 1 latency-related gene can reduce steady-state levels of infected cell protein 0 (bICP0). J Virol. 2010;84(13):6297–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mahjoub N, Dhorne-Pollet S, Fuchs W, Endale Ahanda ML, Lange E, Klupp B, et al. A 2.5-kilobase deletion containing a cluster of nine microRNAs in the latency-associated-transcript locus of the pseudorabies virus affects the host response of porcine trigeminal ganglia during established latency. J Virol. 2015;89(1):428–42.

  105. Meyer C, Kerns A, Haberthur K, Dewane J, Walker J, Gray W, et al. Attenuation of the adaptive immune response in rhesus macaques infected with simian varicella virus lacking open reading frame 61. J Virol. 2013;87(4):2151–63.

  106. Verjans GM, Hintzen RQ, van Dun JM, Poot A, Milikan JC, Laman JD, et al. Selective retention of herpes simplex virus-specific T cells in latently infected human trigeminal ganglia. Proc Natl Acad Sci U S A. 2007;104(9):3496–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ouwendijk WJ, Abendroth A, Traina-Dorge V, Getu S, Steain M, Wellish M, et al. T-cell infiltration correlates with CXCL10 expression in ganglia of cynomolgus macaques with reactivated simian varicella virus. J Virol. 2013;87(5):2979–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Steain M, Gowrishankar K, Rodriguez M, Slobedman B, Abendroth A. Upregulation of CXCL10 in human dorsal root ganglia during experimental and natural varicella-zoster virus infection. J Virol. 2011;85(1):626–31.

    Article  CAS  PubMed  Google Scholar 

  109. Abendroth A, Slobedman B, Lee E, Mellins E, Wallace M, Arvin AM. Modulation of major histocompatibility class II protein expression by varicella-zoster virus. J Virol. 2000;74(4):1900–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Verweij MC, Wellish M, Whitmer T, Malouli D, Lapel M, Jonjic S, et al. Varicella viruses inhibit interferon-stimulated JAK-STAT signaling through multiple mechanisms. PLoS Pathog. 2015;11(5):e1004901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nagel MA, James SF, Traktinskiy I, Wyborny A, Choe A, Rempel A, et al. Inhibition of phosphorylated-STAT1 nuclear translocation and antiviral protein expression in human brain vascular adventitial fibroblasts infected with varicella-zoster virus. J Virol. 2014;88(19):11634–7.

  112. Ambagala APN, Cohen JI. Varicella-Zoster Virus IE63, a Major Viral Latency Protein, Is Required To Inhibit the Alpha Interferon-Induced Antiviral Response▿. J Virol. 2007;81(15):7844–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sen N, Sommer M, Che X, White K, Ruyechan WT, Arvin AM. Varicella-zoster virus immediate-early protein 62 blocks interferon regulatory factor 3 (IRF3) phosphorylation at key serine residues: a novel mechanism of IRF3 inhibition among herpesviruses. J Virol. 2010;84(18):9240–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Vandevenne P, Lebrun M, El Mjiyad N, Ote I, Di Valentin E, Habraken Y, et al. The varicella-zoster virus ORF47 kinase interferes with host innate immune response by inhibiting the activation of IRF3. PLoS One. 2011;6(2):e16870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang L, Oliver SL, Sommer M, Rajamani J, Reichelt M, Arvin AM. Disruption of PML nuclear bodies is mediated by ORF61 SUMO-interacting motifs and required for varicella-zoster virus pathogenesis in skin. PLoS Pathog. 2011;7(8):e1002157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jones JO, Arvin AM. Inhibition of the NF-kappaB pathway by varicella-zoster virus in vitro and in human epidermal cells in vivo. J Virol. 2006;80(11):5113–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sloan E, Henriquez R, Kinchington PR, Slobedman B, Abendroth A. Varicella-zoster virus inhibition of the NF-kappaB pathway during infection of human dendritic cells: role for open reading frame 61 as a modulator of NF-kappaB activity. J Virol. 2012;86(2):1193–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Whitmer T, Malouli D, Uebelhoer LS, DeFilippis VR, Fruh K, Verweij MC. The ORF61 protein encoded by simian varicella virus and varicella-zoster virus inhibits NF-kappaB signaling by interfering with IkappaBalpha degradation. J Virol. 2015;89(17):8687–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhu H, Zheng C, Xing J, Wang S, Li S, Lin R, et al. Varicella-zoster virus immediate-early protein ORF61 abrogates the IRF3-mediated innate immune response through degradation of activated IRF3. J Virol. 2011;85(21):11079–89.

  120. Morrow G, Slobedman B, Cunningham AL, Abendroth A. Varicella-zoster virus productively infects mature dendritic cells and alters their immune function. J Virol. 2003;77(8):4950–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Abendroth A, Lin I, Slobedman B, Ploegh H, Arvin AM. Varicella-zoster virus retains major histocompatibility complex class I proteins in the Golgi compartment of infected cells. J Virol. 2001;75(10):4878–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Eisfeld AJ, Yee MB, Erazo A, Abendroth A, Kinchington PR. Downregulation of class I major histocompatibility complex surface expression by varicella-zoster virus involves open reading frame 66 protein kinase-dependent and -independent mechanisms. J Virol. 2007;81(17):9034–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. • Ouwendijk WJD, van Veen S, Mahalingam R, Verjans G. Simian varicella virus inhibits the interferon gamma signalling pathway. J Gen Virol. 2017. https://doi.org/10.1099/jgv.0.000925. These results demonstrate that SVV targets three proteins in the IFNy signal transduction pathway to escape the antiviral effects of IFNy.

  124. •• Campbell TM, McSharry BP, Steain M, Ashhurst TM, Slobedman B, Abendroth A. Varicella zoster virus productively infects human natural killer cells and manipulates phenotype. PLoS Pathog. 2018;14(4):e1006999 This study showed that VZV infected NK cells upregulate skin-homing chemokine receptors, inducing a phenotype that could facilitate dissemination of virus in the host.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Campbell TM, McSharry BP, Steain M, Slobedman B, Abendroth A. Varicella-zoster virus and herpes simplex virus 1 differentially modulate NKG2D ligand expression during productive infection. J Virol. 2015;89(15):7932–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gershon AA. Is chickenpox so bad, what do we know about immunity to varicella zoster virus, and what does it tell us about the future? J Infect. 2017;74(Suppl 1):S27–33.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Takahashi M, Asano Y, Kamiya H, Baba K, Ozaki T, Otsuka T, et al. Development of varicella vaccine. J Infect Dis. 2008;197(Suppl 2):S41–4.

  128. Goulleret N, Mauvisseau E, Essevaz-Roulet M, Quinlivan M, Breuer J. Safety profile of live varicella virus vaccine (Oka/Merck): five-year results of the European Varicella Zoster Virus Identification Program (EU VZVIP). Vaccine. 2010;28(36):5878–82.

    Article  CAS  PubMed  Google Scholar 

  129. Chaves SS, Haber P, Walton K, Wise RP, Izurieta HS, Schmid DS, et al. Safety of varicella vaccine after licensure in the United States: experience from reports to the vaccine adverse event reporting system, 1995-2005. J Infect Dis. 2008;197(Suppl 2):S170–7.

  130. Galea SA, Sweet A, Beninger P, Steinberg SP, Larussa PS, Gershon AA, et al. The safety profile of varicella vaccine: a 10-year review. J Infect Dis. 2008;197(Suppl 2):S165–9.

    Article  PubMed  Google Scholar 

  131. Weinmann S, Chun C, Schmid DS, Roberts M, Vandermeer M, Riedlinger K, et al. Incidence and clinical characteristics of herpes zoster among children in the varicella vaccine era, 2005-2009. J Infect Dis. 2013;208(11):1859–68.

  132. Shapiro ED, Vazquez M, Esposito D, Holabird N, Steinberg SP, Dziura J, et al. Effectiveness of 2 doses of varicella vaccine in children. J Infect Dis. 2011;203(3):312–5.

  133. Harpaz R, Ortega-Sanchez IR, Seward JF. Prevention of herpes zoster: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2008;57(RR-5):1–30 quiz CE2–4.

    PubMed  Google Scholar 

  134. Keating GM. Shingles (herpes zoster) vaccine (zostavax((R))): a review of its use in the prevention of herpes zoster and postherpetic neuralgia in adults aged >/=50 years. Drugs. 2013;73(11):1227–44.

    Article  CAS  PubMed  Google Scholar 

  135. Oxman MN, Levin MJ, Johnson GR, Schmader KE, Straus SE, Gelb LD, et al. A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults. N Engl J Med. 2005;352(22):2271–84.

  136. Sutradhar SC, Wang WW, Schlienger K, Stek JE, Xu J, Chan IS, et al. Comparison of the levels of immunogenicity and safety of Zostavax in adults 50 to 59 years old and in adults 60 years old or older. Clin Vaccine Immunol. 2009;16(5):646–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Levin MJ, Oxman MN, Zhang JH, Johnson GR, Stanley H, Hayward AR, et al. Varicella-zoster virus-specific immune responses in elderly recipients of a herpes zoster vaccine. J Infect Dis. 2008;197(6):825–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. •• Syed YY. Recombinant zoster vaccine (Shingrix®): a review in herpes zoster. Drugs Aging. 2018;35(12):1031–40. https://doi.org/10.1007/s40266-018-0603-x. A good and recent summary about the data regarding the new Shringrix vaccine against Herpes Zoster.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilhem Messaoudi.

Ethics declarations

Conflict of Interest

Océane Sorel and Ilhem Messaoudi each declare no potential conflicts of interest.

Human and Animal Rights

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Virology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorel, O., Messaoudi, I. Insights into the Pathogenesis of Varicella Viruses. Curr Clin Micro Rpt 6, 156–165 (2019). https://doi.org/10.1007/s40588-019-00119-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40588-019-00119-2

Keywords

Navigation