Skip to main content

Advertisement

Log in

Effects of Single-Session Normobaric Hypoxia in Rats Aged 10 Days on Sensorimotor Development and Behavior

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Fetal or neonatal hypoxia is one of the main causes of neonatal mortality and results in long-term impairments to motor and cognitive functions. The aim of the present work was to study the effects of single-session normobaric hypoxia in rats aged 10 days (a model of premature birth in humans). Male and female Wistar rats were subjected to hypoxia for 2 h at an oxygen concentration of 8%. Control animals were kept in the same conditions but with a normal oxygen content. Levels of physical and motor development, movement and exploratory activity, and anxiety were assessed from day 11 to day 35 of life. Mortality due to exposure was 21.1%. Rats of both sexes showed slowing of weight gain and impaired production of motor reflexes. Impairments to movement coordination and balance ability were found in male but not female rats subjected to neonatal hypoxia. Female rats of adolescent age exposed to hypoxia showed increases in anxiety in the elevated plus maze test. The results provided evidence of sex dependence in the effects of neonatal hypoxia. The method used here can be regarded as a model of hypoxic brain damage in premature neonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. Millar, L. Shi, A. Hoerder-Suabedissen, and Z. Molnár, “Neonatal hypoxia ischemia: mechanisms, models, and therapeutic challenges,” Front. Cell. Neurosci., 11, 1–36 (2017), https://doi.org/10.3389/fncel.2017.00078.

    Article  CAS  Google Scholar 

  2. M. Piesova and M. Mach, “Impact of perinatal hypoxia on the developing brain,” Physiol. Res., 69, 199–213 (2020), https://doi.org/10.33549/physiolres.934198.

    Article  CAS  PubMed  Google Scholar 

  3. I. A. Sukhanova, E. A. Sebentsova, and N. G. Levitskaya, “The acute and delayed effects of perinatal hypoxic brain damage in children and in model experiments with rodents,” Neurochem. J., 10, No. 4, 258–272 (2016), https://doi.org/10.1134/S1819712416040127.

    Article  CAS  Google Scholar 

  4. M. Alexander, H. Garbus, A. L. L. Smith, et al., “Behavioral and histological outcomes following neonatal HI injury in a preterm (P3) and term (P7) rodent model,” Behav. Brain Res., 259, 85–96 (2014), https://doi.org/10.1016/j.bbr.2013.10.038.

    Article  CAS  PubMed  Google Scholar 

  5. A. Smith, M. Alexander, T. Rosenkrantz, et al., “Sex differences in behavioral outcome following neonatal hypoxia ischemia: insights from a clinical meta-analysis and a rodent model of induced hypoxic ischemic brain injury,” Exp. Neurol., 254, 54–67 (2014), https://doi.org/10.1016/j.expneurol.2014.01.003.

    Article  PubMed  Google Scholar 

  6. S. S. Cohen and B. S. Stonestreet, “Sex differences in behavioral outcome following neonatal hypoxia ischemia: insights from a clinical meta-analysis and a rodent model of induced hypoxic ischemic injury,” Exp. Neurol., 256, 70–73 (2014), https://doi.org/10.1016/j.expneurol.2014.03.018.

    Article  PubMed  Google Scholar 

  7. M. Delcour, M. Russier, M. Amin, et al., “Impact of prenatal ischemia on behavior, cognitive abilities and neuroanatomy in adult rats with white matter damage,” Behav. Brain Res., 232, No. 1, 233–244 (2012), https://doi.org/10.1016/j.bbr.2012.03.029.

    Article  PubMed  Google Scholar 

  8. B. S. Lee, E. Jung, Y. Lee, and S.-H. Chung, “Hypothermia decreased the expression of heat shock proteins in neonatal rat model of hypoxic ischemic encephalopathy,” Cell Stress Chaperones, 22, No. 3, 409–415 (2017), https://doi.org/10.1007/s12192-017-0782-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. L. Jantzie and S. Robinson, “Preclinical models of encephalopathy of prematurity,” Dev. Neurosci., 37, No. 4, 277–288 (2015), https://doi.org/10.1159/000371721.

    Article  CAS  PubMed  Google Scholar 

  10. J. E. Rice, R. C. Vannucci, and J. B. Brierley, “The influence of immaturity on hypoxic-ischemic brain damage in the rat,” Ann. Neurol., 9, No. 2, 131–141 (1981), https://doi.org/10.1002/ana.410090206.

    Article  PubMed  Google Scholar 

  11. V. A. Otellin, L. I. Khozhai, L. A. Vataeva, and T. T. V. A. Shishko, “Long-term sequelae of hypoxia in the perinatal period of development on the structural-functional characteristics of the brain in rats,” Ros. Fiziol. Zh., 97, No. 10, 1092–1100(2011).

    CAS  Google Scholar 

  12. V. A. Otellin, L. I. Khozhai, and L. A. Vataeva, “Effects of hypoxia in early perinatal ontogenesis on behavior and the structural characteristics of the rat brain,” Zh. Evol. Biokhim. Fiziol., 48, No. 5, 467– 472 (2012).

    CAS  PubMed  Google Scholar 

  13. S. Takada, L. Motta-Teixeira, A. Machado-Nils, et al., “Impact of neonatal anoxia on adult rat hippocampal volume, neurogenesis and behavior,” Behav. Brain Res., 296, 331–338 (2016), https://doi.org/10.1016/j.bbr.2015.08.039.

    Article  PubMed  Google Scholar 

  14. Z. Wang, J. Zhan, X. Wang, et al., “Sodium hydrosulfide prevents hypoxia-induced behavioral impairment in neonatal mice,” Brain Res., 1538, 126–134 (2013), https://doi.org/10.1016/j.brainres.2013.09.043.

    Article  CAS  PubMed  Google Scholar 

  15. I. A. Sukhanova, E. A. Sebentsova, D. D. Khukhareva, et al., “Gender- dependent changes in physical development, BDNF content and GSH redox system in a model of acute neonatal hypoxia in rats,” Behav. Brain Res., 350, 87–98 (2018), https://doi.org/10.1016/j.bbr.2018.05.008.

    Article  CAS  PubMed  Google Scholar 

  16. I. A. Sukhanova, E. A. Sebentsova, D. D. Khukhareva, et al., “Earlylife N-arachidonoyl-dopamine exposure increases antioxidant capacity of the brain tissues and reduces functional deficits after neonatal hypoxia in rats,” Int. J. Dev. Neurosci., 78, 7–18 (2019), https://doi.org/10.1016/j.ijdevneu.2019.06.007.

    Article  CAS  PubMed  Google Scholar 

  17. D. D. Khukhareva, K. D. Guseva, Yu. A. Sukhanova, et al., “Physiological effects of acute neonatal normobaric hypoxia in C57Bl/6 mice,” Zh. Vyssh. Nerv. Deyat., 70, No. 4, 515–527 (2020), https://doi.org/10.31857/S0044467720040048.

    Article  Google Scholar 

  18. J. Altman and K. Sudarshan, “Postnatal development of locomotion in the laboratory rat,” Anim. Behav., 23, 896–920 (1975), https://doi.org/10.1016/0003-3472(75)90114-1.

    Article  CAS  PubMed  Google Scholar 

  19. C. Y. Brazel, R. T. Rosti, S. Boyce, et al., “Perinatal hypoxia/ischemia damages and depletes progenitors from the mouse subventricular zone,” Dev. Neurosci., 26, No. 2–4, 266–274 (2004), https://doi.org/10.1159/000082143.

    Article  CAS  PubMed  Google Scholar 

  20. J.-O. Coq, M. Delcour, V. S. Massicotte, et al., “Prenatal ischemia deteriorates white matter, brain organization, and function: implications for prematurity and cerebral palsy,” Dev. Med. Child Neurol., 58, 7–11 (2016), https://doi.org/10.1111/dmcn.13040.

    Article  PubMed  PubMed Central  Google Scholar 

  21. H. Kletkiewicz, A. Nowakowska, A. Siejka, et al., “Deferoxamine improves antioxidative protection in the brain of neonatal rats: The role of anoxia and body temperature,” Neurosci. Lett., 628, 116–122 (2016), https://doi.org/10.1016/j.neulet.2016.06.022.

    Article  CAS  PubMed  Google Scholar 

  22. B. Peterson, S. Won, R. Geddes, et al., “Sex-related differences in effects of progesterone following neonatal hypoxic brain injury,” Behav. Brain Res., 286, 152–165 (2015), https://doi.org/10.1016/j.bbr.2015.03.005.

    Article  CAS  PubMed  Google Scholar 

  23. A. Lubics, D. Reglodi, A. Tamas, et al., “Neurological refl exes and early motor behavior in rats subjected to neonatal hypoxic-ischemic injury,” Behav. Brain Res., 157, No. 1, 157–165 (2005), https://doi.org/10.1016/j.bbr.2004.06.019.

    Article  PubMed  Google Scholar 

  24. V. Ten, M. Bradley-Moore, J. Gingrich, et al., “Brain injury and neurofunctional defi cit in neonatal mice with hypoxic-ischemic encephalopathy,” Behav. Brain Res., 145, No. 1–2, 209–219 (2003), https://doi.org/10.1016/s0166-4328(03)00146-3.

    Article  PubMed  Google Scholar 

  25. H. Huang, X. Wen, and H. Liu, “Sex differences in brain MRI abnormalities and neurodevelopmental outcomes in a rat model of neonatal hypoxia-ischemia,” Int. J. Neurosci., 126, No. 7, 647–657 (2016), https://doi.org/10.3109/00207454.2015.1047016.

    Article  PubMed  Google Scholar 

  26. L. Fan, S. Lin, Y. Pang, et al., “Hypoxia-ischemia induced neurological dysfunction and brain injury in the neonatal rat,” Behav. Brain Res., 165, No. 1, 80–90 (2005), https://doi.org/10.1016/j.bbr.2005.06.033.

    Article  CAS  PubMed  Google Scholar 

  27. I. A. Zhuravin, N. M. Dubrovskaya, and N. L. Tumanova, “Postnatal physiological development of rats after acute prenatal hypoxia,” Ros. Fiziol. Zh., 89, No. 5, 522–532 (2003).

    CAS  Google Scholar 

  28. E. Mercure and A. L. Barnett, “Neonatal brain MNRI and motor outcome at school age in children with neonatal encephalopathy: a review of personal experience,” Neural Plast., 10, No. 1–2, 51–57 (2003), https://doi.org/10.1155/NP.2003.51.

    Article  Google Scholar 

  29. N. E. Ordyan, V. K. Akulova, S. G. Pivina, et al., “Perinatal hypoxia- induced impairments of behavioral and hormonal stress responses in rats and their correction by a novel GABA derivative,” Zh. Evol. Biokhim. Fiziol., 55, No. 1, 59–64 (2019), https://doi.org/10.1134/S0044452919010091.

    Article  Google Scholar 

  30. H. D. Confortim, B. F. Deniz, W. de Almeida, et al., “Neonatal hypoxia- ischemia caused mild motor dysfunction, recovered by acrobatic training, without affecting morphological structures involved in motor control in rats,” Brain Res., 1707, 27–44 (2019), https://doi.org/10.1016/j.brainres.2018.11.021.

    Article  CAS  PubMed  Google Scholar 

  31. I. Markostamou, A. Ioannidis, E. Dandi, et al., “Maternal separation prior to neonatal hypoxia-ischemia: Impact on emotional aspects of behavior and markers of synaptic plasticity in hippocampus,” Int. J. Dev. Neurosci., 52, 1–12 (2016), https://doi.org/10.1016/j.ijdevneu.2016.04.002.

    Article  CAS  PubMed  Google Scholar 

  32. A. L. Johnston and S. E. Files, “Sex differences in animal tests of anxiety,” Physiol. Behav., 49, 245–250 (1991), https://doi.org/10.1016/0031-9384(91)90039-q.

    Article  CAS  PubMed  Google Scholar 

  33. P. Morales, N. Simola, D. Bustamante, et al., “Nicotinamide prevents the long-term effects of perinatal asphyxia on apoptosis, nonspatial working memory and anxiety in rats,” Exp. Brain Res., 202, 1–14 (2010), https://doi.org/10.1007/s00221-009-2103-z.

    Article  CAS  PubMed  Google Scholar 

  34. P. Galeano, E. Blanco Calvo, D. Madureira de Oliveira, et al., “Long-lasting effects of perinatal asphyxia on exploration, memory and incentive downshift,” Int. J. Dev. Neurosci., 29, No. 6, 609–619 (2011), https://doi.org/10.1016/j.ijdevneu.2011.05.002.

    Article  PubMed  Google Scholar 

  35. L. E. Durán-Carabali, D. M. Arcego, E. F. Sanches, et al., “Preventive and therapeutic effects of environmental enrichment in Wistar rats submitted to neonatal hypoxia-ischemia,” Behav. Brain Res., 359, 485–497 (2019), https://doi.org/10.1016/j.bbr.2018.11.036.

    Article  CAS  PubMed  Google Scholar 

  36. F. J. Northington, “Brief update on animal models of hypoxic-ischemic encephalopathy and neonatal stroke,” ILAR J., 47, No. 1, 32– 38 (2006), https://doi.org/10.1093/ilar.47.1.32.

    Article  CAS  PubMed  Google Scholar 

  37. R. C. Vannucci and S. J. Vannucci, “Perinatal hypoxic-ischemic brain damage: Evolution of an animal model,” Dev. Neurosci., 27, No. 2–4, 81–86 (2005), https://doi.org/10.1159/000085978.

    Article  CAS  PubMed  Google Scholar 

  38. A. L. Marriott, E. Rojas-Mancilla, P. Morales, et al., “Models of progressive neurological dysfunction originating early in life,” Prog. Neurobiol., 155, 2–20 (2017), https://doi.org/10.1016/j.pneurobio.2015.10.001.

    Article  PubMed  Google Scholar 

  39. W. F. Chen, H. Chang, L. T. Huang, et al., “Alterations in long-term seizure susceptibility and the complex of PSD-95 with NMDA receptor from animals previously exposed to perinatal hypoxia,” Epilepsia, 47, No. 2, 288–296 (2006), https://doi.org/10.1111/j.1528-1167.2006.00420.x.

    Article  PubMed  Google Scholar 

  40. M. A. Mikati, M. P. Zeinieh, R. M. Kurdi, et al., “Long-term effects of acute and of chronic hypoxia on behavior and on hippocampal histology in the developing brain,” Brain Res. Dev. Brain Res., 157, No. 1, 98–102 (2005), https://doi.org/10.1016/j.devbrainres.2005.03.007.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Levitskaya.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 107, No. 2, pp. 187–202, February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khukhareva, D.D., Sukhanova, Y.A., Sebentsova, E.A. et al. Effects of Single-Session Normobaric Hypoxia in Rats Aged 10 Days on Sensorimotor Development and Behavior. Neurosci Behav Physi 51, 1153–1161 (2021). https://doi.org/10.1007/s11055-021-01175-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01175-2

Keywords

Navigation