Skip to main content
Log in

Physiological Effects of Acute Neonatal Normobaric Hypoxia in C57BL/6 Mice

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Perinatal hypoxia (PH) is one of the main factors having adverse influences on the development of the central nervous system. The sequelae of PH and the mechanisms of its development have been studied in animal experiments, mainly in rodents, such that there is still a need to develop more appropriate experimental models. The aim of the present work was to study the effects of single episodes of normobaric hypoxia in the offspring of C57BL/6 mice of both sexes. Mice aged two days were subjected to hypoxia for 2 h using an oxygen content of 8%. Control mice were kept in the same conditions but with a normal oxygen content. Levels of physical and motor development, motor and exploratory activity, and anxiety levels were determined from day 3 to day 31 of life. These studies showed that exposure led to higher levels of mortality in C57BL/6 mice, producing impairments to the establishment of sensorimotor reflexes, changes in behavior in the open field test, and a minor increase in anxiety in the elevated plus maze test. These results lead to the conclusion that models based on single episodes of normobaric hypoxia in mice can be used to study the pathophysiological and neurochemical mechanisms underlying neurological impairments in perinatal hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M., Garbus, H., Smith, A. L., et al., “Behavioral and histological outcomes following neonatal HI injury in a preterm (P3) and term (P7) rodent model,” Behav. Brain Res., 259, 85–96 (2014).

    Article  CAS  Google Scholar 

  • Altman, J. and Sudarshan, K., “Postnatal development of locomotion in the laboratory rat,” Anim. Behav., 23, 896–920 (1975).

    Article  CAS  Google Scholar 

  • Arteni, N., Pereira, L., Rodrigues, A., et al., “Lateralized and sex-dependent behavioral and morphological effects of unilateral neonatal cerebral hypoxia-ischemia in the rat,” Behav. Brain Res., 210, No. 1, 92–98 (2010).

    Article  CAS  Google Scholar 

  • Ashwal, S., Ghosh, N., Turenius, C. I., et al., “Reparative effects of neural stem cells in neonatal hypoxic-ischemic injury are not influenced by host sex,” Pediatr. Res., 75, No. 5, 603–611 (2014).

    Article  CAS  Google Scholar 

  • Bolisetty, S., Dhawan, A., Abdel-Latif, M., et al., “Intraventricular hemorrhage and neurodevelopmental outcomes in extreme preterm infants,” Pediatrics, 133, No. 1, 55–62 (2014).

    Article  Google Scholar 

  • Burnsed, J., Chavez-Valdez, R., Hossain, M., et al., “Hypoxia-ischemia and therapeutic hypothermia in the neonatal mouse brain – a longitudinal study,” PLoS One, 10, No. 3, 0118889 (2015).

    Article  Google Scholar 

  • Caputa, M., Rogalska, J., Wentowska, K., and Nowakowska, A., “Perinatal asphyxia, hyperthermia and hyperferremia as factors inducing behavioural disturbances in adulthood: A rat model,” Behav. Brain Res., 163, No. 2, 246–256 (2005).

    Article  Google Scholar 

  • Chavez-Valdez, R., Martin, L. J., Razdan, S., et al., “Sexual dimorphism in BDNF signaling after neonatal hypoxia-ischemia and treatment with necrostatin-1,” Neuroscience, 260, 106–119 (2014).

    Article  CAS  Google Scholar 

  • Diaz, J., Abiola, S., Kim, N., et al., “Therapeutic hypothermia provides variable protection against behavioral deficits after neonatal hypoxia-ischemia: a potential role for brain-derived neurotrophic factor,” Dev. Neurosci., 39, No. 1–4, 257–272 (2017).

    Google Scholar 

  • Fan, L., Lin, S., Pang, Y., et al., “Hypoxia-ischemia induced neurological dysfunction and brain injury in the neonatal rat,” Behav. Brain Res., 165, No. 1, 80–90 (2005).

    Article  CAS  Google Scholar 

  • Galeano, P., Blanco Calvo, E., Madureira de Oliveira, D., et al., “Longlasting effects of perinatal asphyxia on exploration, memory and incentive downshift,” Int. J. Dev. Neurosci., 29, No. 6, 609–619 (2011).

    Article  Google Scholar 

  • Hoshikawa, Y., Nana-Sinkam, P., Moore, M., et al., “Hypoxia induces different genes in the lungs of rats compared with mice,” Physiol. Genomics, 12, No. 3, 209–219 (2003).

    Article  CAS  Google Scholar 

  • Huang, H., Wen, X., and Liu, H., “Sex differences in brain MRI abnormalities and neurodevelopmental outcomes in a rat model of neonatal hypoxia-ischemia,” Int. J. Neurosci., 126, No. 7, 647–657 (2016).

    Article  Google Scholar 

  • Jantzie, L. and Robinson, S., “Preclinical models of encephalopathy of prematurity,” Dev. Neurosci., 37, No. 4, 277–288 (2015).

    Article  CAS  Google Scholar 

  • Jochmans-Lemoine, A., Shahare, M., Soliz, J., and Joseph, V., “HIF1α and physiological responses to hypoxia are correlated in mice but not in rats,” J. Exp. Biol., 219, No. 24, 3952–3961 (2016).

    Article  Google Scholar 

  • Kletkiewicz, H., Nowakowska, A., Siejka, A., et al., “Deferoxamine improves antioxidative protection in the brain of neonatal rats: The role of anoxia and body temperature,” Neurosci. Lett., 628, 116–122 (2016).

    Article  CAS  Google Scholar 

  • Lubics, A., Reglodi, D., Tamas, A., et al., “Neurological reflexes and early motor behavior in rats subjected to neonatal hypoxic-ischemic injury,” Behav. Brain Res., 157, No. 1, 157–165 (2005).

    Article  Google Scholar 

  • Mayoral, J., Nouzova, M., Navare, A., and Noriega, F., “NADP+-dependent farnesol dehydrogenase, a corpora allata enzyme involved in juvenile hormone synthesis,” Proc. Natl. Acad. Sci. USA, 106, No. 50, 21091–21096 (2009).

    Article  CAS  Google Scholar 

  • Millar, L., Shi, L., Hoerder-Suabedissen, A., and Molnar, Z., “Neonatal hypoxia ischaemia: mechanisms, models, and therapeutic challenges,” Front. Cell. Neurosci., 11, 1–36 (2017).

    Article  CAS  Google Scholar 

  • Otellin, V. A., Khozhai, L. I., and Vataeva, L. A., “Effects of hypoxia in early perinatal ontogeny on behavior and the structural characteristics of the brain in rats,” Zh. Evolyuts. Biokhim. Fiziol., 48, No. 5, 467–472 (2012).

    CAS  Google Scholar 

  • Peterson, B., Won, S., Geddes, R., et al., “Sex-related differences in effects of progesterone following neonatal hypoxic brain injury,” Behav. Brain Res., 286, 152–165 (2015).

    Article  CAS  Google Scholar 

  • Platel, A., Jalfre, M., Pawelec, C., et al., “Habituation of exploratory activity in mice: effects of combinations of piracetam and choline on memory processes,” Pharmacol. Biochem. Behav., 21, No. 2, 209–212 (1984).

    Article  CAS  Google Scholar 

  • Rice, J. E., Vannucci, R. C., and Brierley, J. B., “The influence of immaturity on hypoxic-ischemic brain damage in the rat,” Ann. Neurol., 9, No. 2, 131–141 (1981).

    Article  Google Scholar 

  • Rotstein, M., Bassan, H., Kariv, N., et al., “NAP enhances neurodevelopment of newborn apolipoprotein E-deficient mice subjected to hypoxia,” J. Pharmacol. Exp. Ther., 319, No. 1, 332–339 (2006).

    Article  CAS  Google Scholar 

  • Salmaso, N., Jablonska, B., Scafidi, J., et al., “Neurobiology of premature brain injury,” Nat. Neurosci., 17, No. 3, 341–346 (2014).

    Article  CAS  Google Scholar 

  • Sheldon, R. A., Sedik, C., and Ferriero, D. M., “Strain-related brain injury in neonatal mice subjected to hypoxia-ischemia,” Brain Res., 810, No. 1–2, 114–122 (1998).

  • Sheldon, R., Osredkar, D., Lee, C., et al., “HIF-1α-deficient mice have increased brain injury after neonatal hypoxia-ischemia,” Dev. Neurosci., 31, No. 5, 452–458 (2009).

    Article  CAS  Google Scholar 

  • Smith, A., Alexander, M., Rosenkrantz, T., et al., “Sex differences in behavioral outcome following neonatal hypoxia ischemia: insights from a clinical meta-analysis and a rodent model of induced hypoxic ischemic brain injury,” Exp. Neurol., 254, 54–67 (2014).

    Article  Google Scholar 

  • Sukhanova, I. A., Sebentsova, E. A., Khukhareva, D. D., et al., “Genderdependent changes in physical development, BDNF content and GSH redox system in a model of acute neonatal hypoxia in rats,” Behav. Brain Res., 350, 87–98 (2018).

    Article  CAS  Google Scholar 

  • Sukhanova, I. A., Sebentsova, E. A., Khukhareva, D. D., et al., “Early-life N-arachidonoyl-dopamine exposure increases antioxidant capacity of the brain tissues and reduces functional deficits after neonatal hypoxia in rats,” Int. J. Dev. Neurosci., 78, 7–18 (2019).

    Article  CAS  Google Scholar 

  • Sukhanova, Yu. A., Sebentsova, E. A., and Levitskaya, N. G., “Acute and long-term effects of perinatal hypoxic brain damage in children and model experiments on rodents,” Neirokhimiya, 33, No. 4, 276–292 (2016).

    Google Scholar 

  • Takada, S., dos Santos Haemmerle, C., Motta-Teixeira, L., et al., “Neonatal anoxia in rats: hippocampal cellular and subcellular changes related to cell death and spatial memory,” Neuroscience, 284, 247–259 (2015).

  • Takada, S., Motta-Teixeira, L., Machado-Nils, A., et al., “Impact of neonatal anoxia on adult rat hippocampal volume, neurogenesis and behavior,” Behav. Brain Res., 296, 331–338 (2016).

    Article  Google Scholar 

  • Ten, V., Bradley-Moore, M., Gingrich, J., et al., “Brain injury and neurofunctional deficit in neonatal mice with hypoxic-ischemic encephalopathy,” Behav. Brain Res., 145, No. 1–2, 209–219 (2003).

    Google Scholar 

  • Towfighi, J., Mauger, D., Vannucci, R. C., and Vannucci, S. J., “Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia: a light microscopic study,” Dev. Brain Res., 100, No. 2, 149–160 (1997).

    Article  CAS  Google Scholar 

  • Vannucci, R., Lyons, D., and Vasta, F., “Regional cerebral blood flow during hypoxia-ischemia in immature rats,” Stroke, 19, No. 2, 245–250 (1988).

    Article  CAS  Google Scholar 

  • Wang, Z., Zhan, J., Wang, X., et al., “Sodium hydrosulfide prevents hypoxia-induced behavioral impairment in neonatal mice,” Brain Res., 1538, 126–134 (2013).

    Article  CAS  Google Scholar 

  • Xu, B., Xiao, A., Chen, W., et al., “Neuroprotective effects of a PSD-95 inhibitor in neonatal hypoxic-ischemic brain injury,” Mol. Neurobiol., 53, No. 9, 5962–5970 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Levitskaya.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 70, No. 4, pp. 515–527, July–August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khukhareva, D.D., Guseva, K.D., Sukhanova, Y.A. et al. Physiological Effects of Acute Neonatal Normobaric Hypoxia in C57BL/6 Mice. Neurosci Behav Physi 51, 220–228 (2021). https://doi.org/10.1007/s11055-021-01060-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01060-y

Keywords

Navigation