Skip to main content
Log in

Nicotinamide prevents the long-term effects of perinatal asphyxia on apoptosis, non-spatial working memory and anxiety in rats

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

There is no established treatment for the long-term effects produced by perinatal asphyxia. Thus, we investigated the neuroprotection provided by nicotinamide against the effects elicited by perinatal asphyxia on hippocampus and behaviour observed at 30–90 days of age. Asphyxia was induced by immersing foetuses-containing uterine horns, removed from ready-to-deliver rats into a water bath at 37°C for 20 min. Caesarean-delivered siblings were used as controls. Saline or nicotinamide (0.8 mmol/kg, i.p.) was administered to control and asphyxia-exposed animals 24, 48, and 72 h after birth. The animals were examined for morphological changes in hippocampus, focusing on delayed cell death and mossy fibre sprouting, and behaviour, focusing on cognitive behaviour and anxiety. At the age of 30–45 days, asphyxia-exposed rats displayed (1) increased apoptosis, assessed in whole hippocampus by nuclear Hoechst staining, and (2) increased mossy fibre sprouting, restricted to the stratum oriens of dorsal hippocampus, assessed by Timm’s staining. Rats from the same cohorts displayed (3) deficits in non-spatial working memory, assessed by a novel object recognition task, and (4) increased anxiety, assessed by an elevated plus-maze test when examined at the age of 90 days. Nicotinamide prevented the effects elicited by perinatal asphyxia on apoptosis, working memory, and anxiety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AS:

Asphyxia saline

AN:

Asphyxia nicotinamide

CA:

Cornus amonnis

CN:

Caesarean-delivered nicotinamide

CNS:

Central nervous system

CS:

Caesarean-delivered saline

DG:

Dentate gyrus

IML:

Inner molecular layer

MFS:

Mossy fibre sprouting

n.s.:

Non-significant

OML:

Outer molecular layer

P:

Postnatal day

PARP-1:

Poly(ADP-ribose) polymerase-1

PBS:

Phosphate buffered saline

S1, S2:

Session 1, 2

SEM:

Standard error of the mean

SL:

Stratum lucidum

SO:

Stratum oriens

References

  • Abdelkarim GE, Gertz K, Harms C, Katchanov J, Dimagl U, Szabo C, Endres M (2001) Protective effects of PJ34, a novel, potent inhibitor of poly(ADP-ribose) polymerase (PARP) in vitro and in vivo models of stroke. Int J Mol Med 7:255–260

    CAS  PubMed  Google Scholar 

  • Akhter W, Asraf QM, Zanelli SA, Mishra OP, Delivoria-Papadopoulus M (2001) Effect of graded hypoxia on cerebral cortical genomic DNA fragmentation in newborn piglets. Bio Neonate 79:187–193

    CAS  Google Scholar 

  • Almli CR, Levy TJ, Han BH, Shah AR, Gidday JM, Holtzman DM (2000) BDNF protects against spatial memory deficits following neonatal hypoxia-ischemia. Exp Neurol 166:99–114

    CAS  PubMed  Google Scholar 

  • Balduini W, De Angelis V, Mazzoni E, Cimino M (2000) Long-lasting behavioral alterations following a hypoxic/ischemic brain injury in neonatal rats. Brain Res 859:318–325

    CAS  PubMed  Google Scholar 

  • Berger NA (1985) Poly(ADP-ribose) polymerase in the cellular response to DNA damage. Radiat Res 1001:4–15

    Google Scholar 

  • Bernard PB, Macdonald DS, Gill DA, Ryan CL, Tasker RA (2007) Hippocampal mossy fiber sprouting and elevated trkB receptor expression following systemic administration of low dose domoic acid during neonatal development. Hippocampus 17:1121–1133

    CAS  PubMed  Google Scholar 

  • Biernaskie J, Corbett D (2001) Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J Neurosci 21:5272–5280

    CAS  PubMed  Google Scholar 

  • Bjelke B, Andersson K, Ögren SÖ, Bolme P (1991) Asphyctic lesion: proliferation of tyrosine hydroxylase-immunoreactive nerve cell bodies in the rat substantia nigra and functional changes in dopamine neurotransmission. Brain Res 543:1–9

    CAS  PubMed  Google Scholar 

  • Boksa P, Krishnamurthy A, Brooks W (1995) Effects of a period of asphyxia during birth on spatial learning in the rat. Pediatr Res 37:489–496

    CAS  PubMed  Google Scholar 

  • Bustamante D, Goiny M, Åström G, Gross J, Andersson K, Herrera-Marschitz M (2003) Nicotinamide prevents the long-term effects of perinatal asphyxia on basal ganglia monoamine systems in the rat. Exp Brain Res 148:227–232

    CAS  PubMed  Google Scholar 

  • Bustamante D, Morales P, Pereyra JT, Goiny M, Herrera-Marschitz M (2007) Nicotinamide prevents the effect of perinatal asphyxia on dopamine release evaluated with in vivo microdialysis 3 months after birth. Exp Brain Res 177:358–369

    CAS  PubMed  Google Scholar 

  • Calvert JW, Zhang JH (2005) Pathophysiology of an hypoxic-ischemic insult during the perinatal period. Neurol Res 27:246–260

    PubMed  Google Scholar 

  • Cavazos JE, Sutula TP (1990) Progressive neuronal loss induced by kindling: a possible mechanism for mossy fiber synaptic reorganization and hippocampal sclerosis. Brain Res 527:1–6

    CAS  PubMed  Google Scholar 

  • Cavazos JE, Golarai G, Sutula TP (1991) Mossy fiber synaptic reorganization induced by kindling: time course of development, progression, and performance. J Neurosci 11:2795–2803

    CAS  PubMed  Google Scholar 

  • Chen Y, Engidawork E, Loidl F, Dell’Anna E, Goiny M, Lubec G, Andersson K, Herrera-Marschitz M (1997) Short- and long-term effects of perinatal asphyxia on monoamine, amino acid and glycolysis product levels measured in the basal ganglia of the rat. Dev Brain Res 104:19–30

    CAS  Google Scholar 

  • Chen SF, Huang CC, Wu HM, Chen SH, Liang YC, Hsu KS (2004) Seizure, neuron loss, and mossy fiber sprouting in herpes simplex virus type 1-infected organotypic hippocampal cultures. Epilepsia 45:322–332

    PubMed  Google Scholar 

  • Chen Z, Kontonotas D, Friedmann D, Pitts-Kiefer A, Frederick JR, Siman R, Neumar RW (2005) Developmental status of neurons selectively vulnerable to rapidly triggered post-ischemic caspase activation. Neurosci Lett 376:166–170

    CAS  PubMed  Google Scholar 

  • Cole BJ, Hillmann M, Seidelmann D, Klewer M, Jones GH (1995) Effects of benzodiazepine receptor partial inverse agonists in the elevated plus maze test of anxiety in the rat. Psychopharmacology 121:118–126

    CAS  PubMed  Google Scholar 

  • Crusio WE, Schwegler H, Lipp HP (1987) Radial-maze performance and structural variation of the hippocampus in mice: a correlation with mossy fibre distribution. Brain Res 425:182–185

    CAS  PubMed  Google Scholar 

  • Daval JL, Vert P (2004) Apoptosis and neurogenesis after transient hypoxia in the developing rat brain. Semin Perinatol 28:257–263

    PubMed  Google Scholar 

  • Daval JL, Pourie G, Grojean S, Lievre V, Strazielle C, Blaise S, Vert P (2004) Neonatal hypoxia triggers transient apoptosis followed by neurogenesis in the rat CA1 hippocampus. Pediatr Res 55:561–567

    PubMed  Google Scholar 

  • Dawson GR, Tricklebank MD (1995) Use of the elevated plus maze in the search for novel anxiolytic agents. Trends Pharmacol Sci 16:33–36

    CAS  PubMed  Google Scholar 

  • de Haan M, Wyatt JS, Roth S, Vargha-Khadem F, Gadian D, Mishki M (2006) Brain and cognitive-behavioural development after asphyxia at term birth. Dev Sci 9:350–358

    PubMed  Google Scholar 

  • De Murcia G, Menissier de Murcia J (1994) Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem Sci 19:172–176

    PubMed  Google Scholar 

  • Dell’Anna ME, Calzolari S, Molinari M, Iuvone L, Calimici R (1991) Neonatal anoxia induces transitory hyperactivity, permanent spatial memory deficits and CA1 cell density reduction in developing rats. Behav Brain Res 45:125–134

    PubMed  Google Scholar 

  • Dell’Anna E, Chen Y, Engidawork E, Andersson K, Lubec G, Luthman J, Herrera-Marschitz M (1997) Delayed neuronal death following perinatal asphyxia in rat. Exp Brain Res 115:105–115

    PubMed  Google Scholar 

  • du Plessis AJ, Volpe JJ (2002) Perinatal brain injury in the preterm and term newborn. Curr Opin Neurol 15:151–157

    PubMed  Google Scholar 

  • Ducrocq S, Benjelloun N, Plotkine M, Ben-Ari Y, Charriaut-Marlangue C (2000) Poly(ADP-ribose) synthase inhibition reduces ischemic injury and inflammation in neonatal rat brain. J Neurochem 74:2504–2511

    CAS  PubMed  Google Scholar 

  • El-Khodor BF, Boksa P (1997) Long term reciprocal changes in dopamine levels in prefrontal cortex versus nucleus accumbens in rats born by Caesarean section compared to vaginal birth. Exp Neurol 145:118–129

    CAS  PubMed  Google Scholar 

  • Engidawork E, Loidl F, Chen Y, Kohlhauser C, Soeckler S, Dell’Anna E, Lubec B, Lubec G, Goiny M, Gross J, Andersson K, Herrera-Marschitz M (2001) Comparison between hypothermia and glutamate antagonism treatments on the immediate outcome of perinatal asphyxia. Exp Brain Res 138:375–383

    CAS  PubMed  Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res 31:47–59

    CAS  PubMed  Google Scholar 

  • Epsztein J, Milh M, Bihi RI, Jorquera I, Ben-Ari Y, Represa A, Crepel V (2006) Ongoing epileptiform activity in the post-ischemia hippocampus is associated with a permanent shift of the excitatory synaptic balance in CA3 pyramidal neurons. J Neurosci 26:7082–7092

    CAS  PubMed  Google Scholar 

  • Feng Y, Paul IA, LeBlanc MH (2006) Nicotinamide reduces hypoxic ischemic brain injury in the newborn rat. Brain Res Bull 69:117–122

    CAS  PubMed  Google Scholar 

  • Green KN, Steffan JS, Martinez-Coria, Sun X, Schreiber SS, Thompson LM, La Ferla FM (2008) Nicotinamide restores cognition in Alzheimer’s disease, transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-Phosphotau. J Neurosci 28:11500–11510

    CAS  PubMed  Google Scholar 

  • Greiner M, Cardenas S, Parra C, Bravo J, Avalos AM, Paredes A, Lara HE, Fiedler JL (2001) Adrenalectomy regulates apoptotic-associated genes in rat hippocampus. Endocrine 15:323–333

    CAS  PubMed  Google Scholar 

  • Gross J, Andersson K, Chen Y, Muller I, Andreova N, Herrera-Marschitz M (2005) Effect of perinatal asphyxia on tyrosine hydroxylase and D2 and D1 dopamine receptor mRNA levels expressed during postnatal development in rat brain. Mol Brain Res 134:275–281

    CAS  PubMed  Google Scholar 

  • Harry GJ, Lefebvre d’Hellencourt C (2003) Dentate gyrus: alterations that occur with hippocampal injury. Neurotoxicology 24:343–356

    PubMed  Google Scholar 

  • Hasselmo ME, Schnell E (1994) Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: computational modeling and brain slice physiology. J Neurosci 14:3898–3914

    CAS  PubMed  Google Scholar 

  • Herrera-Marschitz M, Loidl CF, Andersson K, Ungerstedt U (1993) Prevention of mortality induced by perinatal asphyxia: hypothermia or glutamate antagonism? Amino Acids 5:413–419

    CAS  Google Scholar 

  • Hirai K, Hayashi T, Chan PH, Zeng J, Yang GY, Basus VJ, James TL, Litt L (2004) PI3K inhibition in neonatal rat brain slices during and after hypoxia reduces phospho-Akt and increases cytosolic cytochrome c and apoptosis. Brain Res Mol Brain Res 124:51–61

    CAS  PubMed  Google Scholar 

  • Hoeger H, Engelmann M, Bernert G, Seidl R, Bubna-Littitz H, Mosgoeller W, Lubec B, Lubec G (2000) Long term neurological and behavioral effects of graded perinatal asphyxia in the rat. Life Sci 66:947–962

    CAS  PubMed  Google Scholar 

  • Hoeger H, Engidawork E, Stolzlechner D, Bubna-Littitz H, Lubec B (2006) Long-term effect of moderate and profound hypothermia on morphology, neurological, cognitive and behavioural functions in a rat model of perinatal asphyxia. Amino Acids 31:385–396

    CAS  PubMed  Google Scholar 

  • Holahan MR, Rekart JL, Sandoval J, Routtenberg A (2006) Spatial learning induces presynaptic structural remodeling in the hippocampal mossy fiber system of two rat strains. Hippocampus 16:560–570

    PubMed  Google Scholar 

  • Holmes GL, Gairsa JL, Chevassus-Au-Louis N, Ben-Ari Y (1998) Consequences of neonatal seizures in the rat: morphological and behavioral effects. Ann Neurol 44:845–857

    CAS  PubMed  Google Scholar 

  • Holmes GL, Sarkisian M, Ben-Ari Y, Chevassus-Au-Louis N (1999) Mossy fiber sprouting after recurrent seizures during early development in rats. J Comp Neurol 404:537–553

    CAS  PubMed  Google Scholar 

  • Iuvone L, Geloso MC, Dell’Anna E (1996) Changes in open field behavior, spatial memory, and hippocampal parvalbumin immunoreactivity following enrichment in rats exposed to neonatal anoxia. Exp Neurol 139:25–33

    CAS  PubMed  Google Scholar 

  • Iwashita A, Tojo N, Matsuura S, Yamazaki S, Kamijo K, Ishida J, Yamamoto H, Hattori K, Matsuoka N, Mutoh S (2004) A novel and potent poly(ADP-ribose) polymerase-1 inhibitor, FR247304 (5-chloro-2-[3-(4-phenyl-3, 6-dihydro-1(2H0-pyridinyl)propyl]-4(3H)-quinazolinone) attenuates neuronal damage in vitro and in vivo models of cerebral ischemia. J Pharmacol Exp Ther 310:425–436

    CAS  PubMed  Google Scholar 

  • Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, Greenberg DA (2001) Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci USA 98:4710–4715

    CAS  PubMed  Google Scholar 

  • Johansen FF, Sorensen T, Tonder N, Zimmer J, Diemer NH (1992) Ultrastructure of neurons containing somatostatin in the dentate hilus of the rat hippocampus after cerebral ischaemia, and a note on their commissural connections. Neuropathol Appl Neurobiol 18:145–157

    CAS  PubMed  Google Scholar 

  • Kadam SD, Dudek FE (2007) Neuropathological features of a rat model for perinatal hypoxic-ischemic encephalopathy with associated epilepsy. J Comp Neurol 505:599–606

    Google Scholar 

  • Kalisch R, Schubert M, Jacob W, Kessler MS, Hemaver R, Wigger A, Landgraf R, Aver DP (2006) Anxiety and hippocampus volume in the rat. Neuropsychopharmacology 31:925–932

    PubMed  Google Scholar 

  • Kamanaka Y, Kondo K, Ikeda Y, Kamoshima W, Kitajima T, Suzuki Y, Nakamura Y, Umemura K (2004) Neuroprotective effects of ONO-1924H, an inhibitor of poly ADP-ribose polymerase (PARP), on cytotoxicity of PC12 cells and ischemic cerebral damage. Life Sci 76:151–162

    CAS  PubMed  Google Scholar 

  • Kaufman SA, Miller SP, Ferriero DM, Glidden DH, Barkovich AJ, Partridge JC (2003) Encephalopathy as a predictor of magnetic resonance imaging abnormalities in asphyxiated newborns. Pediatr Neurol 28:342–346

    PubMed  Google Scholar 

  • Kee NJ, Preston E, Wojtowicz JM (2001) Enhanced neurogenesis after transient global ischemia in the dentate gyrus of the rat. Exp Brain Res 136:313–320

    CAS  PubMed  Google Scholar 

  • Kihara S, Shiraishi T, Nakagawa S, Toda K, Tabuchi K (1994) Visualization of DNA double strand breaks in the gerbil hippocampal CA1 following transient ischemia. Neurosci Lett 175:133–136

    CAS  PubMed  Google Scholar 

  • Kiss P, Szogyi D, Reglodi D, Horvarth G, Farkas J, Lubics A, Tamas A, Atlasz T, Szabadfi K, Babai N, Gabriel R, Koppan M (2009) Effects of perinatal asphyxia on the neurobehavioral and retinal development of newborn rats. Brain Res 1255:42–50

    CAS  PubMed  Google Scholar 

  • Klawitter V, Morales P, Johansson S, Bustamante D, Goiny M, Gross J, Luthman J, Herrera-Marschitz M (2005) Effect of perinatal asphyxia on cell survival, neuronal phenotype and neurite growth evaluated with organotypic triple cultures. Amino Acids 28:149–155

    CAS  PubMed  Google Scholar 

  • Klawitter V, Morales P, Bustamante D, Goiny M, Herrera-Marschitz M (2006) Plasticity of the central nervous system (CNS) following perinatal asphyxia: does nicotinamide provide neuroprotection? Amino Acids 31:377–384

    CAS  PubMed  Google Scholar 

  • Klawitter V, Morales P, Bustamante D, Gomez-Urquijo S, Hökfelt T, Herrera-Marschitz M (2007) Plasticity of basal ganglia neurocircuitries following perinatal asphyxia: effect of nicotinamide. Exp Brain Res 180:139–152

    CAS  PubMed  Google Scholar 

  • Kohlhauser C, Kaehler S, Mosgoeller W, Singewald N, Kouvelas D, Prast H, Hoeger H, Lubec B (1999) Histological changes and neurotransmitter levels three months following perinatal asphyxia in the rat. Life Sci 64:2109–2124

    CAS  PubMed  Google Scholar 

  • Kotti T, Riekkinen PJ Sr, Miettinen R (1997) Characterisation of target cells for aberrant mossy fiber collaterals in the dentate gyrus of epileptic rat. Exp Neurol 146:323–330

    CAS  PubMed  Google Scholar 

  • Lee I, Kesner RP (2002) Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory. Nat Neurosci 5:162–168

    CAS  PubMed  Google Scholar 

  • Loidl CF, Herrera-Marschitz M, Andersson K, You Z-B, Goiny M, O’Connor WT, Silveira R, Rawal R, Bjelke B, Chen Y, Ungerstedt U (1994) Long-term effects of perinatal asphyxia on basal ganglia neurotransmitter systems studied with microdialysis in rat. Neurosci Lett 175:9–12

    CAS  PubMed  Google Scholar 

  • Loidl F, Gavilanes AW, Van Dijk EH, Vreuls W, Blokland A, Vies JS, Steinbusch HW, Blanco CE (2000) Effects of hypothermia and gender on survival and behaviour after perinatal asphyxia in rats. Physiol Behav 68:263–269

    CAS  PubMed  Google Scholar 

  • Mañeru C, Junque C, Botet F, Tallada M, Guardia J (2001) Neuropsychological long-term sequelae of perinatal asphyxia. Brain Inj 15:1029–1039

    PubMed  Google Scholar 

  • Maurice T, Hiramatsu M, Itoh J, Kameyama T, Hasegawa T, Nabeshima T (1994) Behavioral evidence for a modulating role of sigma ligands in memory processes. I. Attenuation of dizocilpine (MK-801)-induced amnesia. Brain Res 647:44–56

    CAS  PubMed  Google Scholar 

  • Morales P, Reyes P, Klawitter V, Huaiquin P, Bustamante D, Fiedler J, Herrera-Marschitz M (2005) Effects of perinatal asphyxia on cell proliferation and neuronal phenotype evaluated with organotypic hippocampal cultures. Neuroscience 135:421–431

    CAS  PubMed  Google Scholar 

  • Morales P, Huaiquin P, Bustamante D, Fiedler J, Herrera-Marschitz M (2007) Perinatal asphyxia induces neurogenesis in hippocampus: an organotypic culture study. Neurotox Res 12:81–84

    CAS  PubMed  Google Scholar 

  • Morales P, Fiedler JL, Andres S, Berrios C, Huaiquin P, Bustamante D, Cardenas S, Parra E, Herrera-Marschitz M (2008) Plasticity of hippocampus following perinatal asphyxia: effects on postnatal apoptosis and neurogenesis. J Neurosci Res 86:2650–2662

    CAS  PubMed  Google Scholar 

  • Morrow BA, Elsworth JD, Roth RH (2002) Prenatal cocaine exposure disrupts non-spatial, short-term memory in adolescent and adult male rats. Behav Brain Res 129:217–223

    CAS  PubMed  Google Scholar 

  • Nadler JV (2003) The recurrent mossy fiber pathway of the epileptic brain. Neurochem Res 28:1649–1658

    CAS  PubMed  Google Scholar 

  • Nakajima W, Ishida A, Lange MS, Gabrielson KL, Wilson MA, Martin LJ, Blue ME, Johnston MV (2000) Apoptosis has a prolonged role in the neurodegeneration after hypoxic ischemia in the newborn rat. J Neurosci 20:7994–8004

    CAS  PubMed  Google Scholar 

  • Nakajima H, Kakui N, Ohkuma K, Ishikawa M, Hasegawa T (2005) A newly synthesized poly(ADP-ribose) polymerase inhibitor, DR2313[2-methyl-3, 5, 7, 8-tetrahydrothiopyranol[4, 3-d]-pyrimidine-4-one]: pharmacological profiles, neuroprotective effects and therapeutic time window in cerebral ischemia in rats. J Pharmacol Exp Ther 312:472–481

    CAS  PubMed  Google Scholar 

  • Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, Tamura A, Kirino T, Nakafuku M (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110:429–441

    CAS  PubMed  Google Scholar 

  • Northington FJ, Ferriero DM, Flock DL, Martin LJ (2001) Delayed neurodegeneration in neonatal rat thalamus after hypoxia-ischemia is apoptosis. J Neurosci 21:1931–1938

    CAS  PubMed  Google Scholar 

  • Olton DS, Feustle WA (1981) Hippocampal function required for nonspatial working memory. Exp Brain Res 41:380–389

    CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    CAS  PubMed  Google Scholar 

  • Pokorny J, Trojan S, Fischer J (1982) Changes in the structure of the rat hippocampus after prolonged postnatal hypoxia. Physiol Bohemoslov 31:193–202

    CAS  PubMed  Google Scholar 

  • Prior H, Schwegler H, Dücker G (1997) Dissociation of spatial memory, spatial working memory and hippocampal mossy fiber distribution in two rat strains differing in emotionality. Behav Brain Res 87:183–194

    CAS  PubMed  Google Scholar 

  • Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–498

    CAS  PubMed  Google Scholar 

  • Ramirez-Amaya V, Balderas I, Sandoval J, Escobar ML, Bermúdez-Rattoni F (2001) Spatial long-term memory is related to mossy fiber synaptogenesis. J Neurosci 21:7340–7348

    CAS  PubMed  Google Scholar 

  • Rekart JL, Sandoval CJ, Routtenberg A (2007) Learning-induced axonal remodeling: evolutionary divergence and conservation of two components of the mossy fiber system within Rodentia. Neurobiol Learn Mem 87:225–235

    PubMed  Google Scholar 

  • Rodgers RJ, Dalvi A (1997) Anxiety, defence and the elevated plus-maze. Neurosci Biobehav Rev 21:801–810

    CAS  PubMed  Google Scholar 

  • Sakakibara Y, Mitha AP, Ogilvy CS, Maynard KI (2000) Post-treatment with nicotinamide (vitamin B(3) reduces the infarct volume following permanent focal cerebral ischemia in female Sprague–Dawley and Wistar rats. Neurosci Lett 281:111–114

    CAS  PubMed  Google Scholar 

  • Sanders MJ, Wiltgen BJ, Fanselow MS (2003) The place of the hippocampus in fear conditioning. Eur J Pharmacol 463:217–223

    CAS  PubMed  Google Scholar 

  • Scharfman HE, Sollas AL, Berger RE, Goodman JH (2003) Electrophysiological evidence of monosynaptic excitatory transmission between granule cells after seizure-induced mossy fiber sprouting. J Neurophysiol 90:2536–2547

    PubMed  Google Scholar 

  • Schopke R, Wolfer DP, Lipp HP, Leisinger-Trigona MC (1991) Swimming navigation and structural variations of the infrapyramidal mossy fibers in the hippocampus. Hippocampus 1:315–328

    CAS  PubMed  Google Scholar 

  • Simola N, Bustamante D, Pinna A, Pontis S, Morales P, Morelli M, Herrera-Marschitz M (2008) Acute perinatal asphyxia impairs non-spatial memory and alters motor coordination in adult male rats. Exp Brain Res 185:595–601

    PubMed  Google Scholar 

  • Sloviter RS (1992) Possible functional consequences of synaptic reorganization in the dentate gyrus of kainate-treated rats. Neurosci Lett 137:91–96

    CAS  PubMed  Google Scholar 

  • Sloviter RS, Zapone CA, Harvey BD, Frotscher M (2006) Kainic acid-induced recurrent mossy fiber innervation of dentate gyrus inhibitory interneurons: possible anatomical substrate of granule cell hyper-inhibition in chronically epileptic rats. J Comp Neurol 494:944–960

    PubMed  Google Scholar 

  • Sperber EF, Haas KZ, Stanton PK, Moshe SL (1991) Resistance of the immature hippocampus to seizure-induced synaptic reorganization. Brain Res 60:88–93

    CAS  Google Scholar 

  • Sutula TP, Golarai G, Cavazos J (1992) Assessing the functional significance of mossy fiber sprouting. Epilepsy Res Suppl 7:251–259

    CAS  PubMed  Google Scholar 

  • Takahashi K, Pieper AA, Croul SE, Zhang J, Snyder SH, Greenberg JH (1999) Post-treatment with an inhibitor of poly(ADP-ribose) polymerase attenuates cerebral damage in focal ischemia. Brain Res 829:46–54

    CAS  PubMed  Google Scholar 

  • Tauck DL, Nadler JV (1985) Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J Neurosci 5:1016–1022

    CAS  PubMed  Google Scholar 

  • Van Erp TG, Saleh PA, Rosso IM, Huttunen M, Lönnqvist J, Pirkola T, Salonen O, Valanne L, Poutanen VP, Standertskjöld-Nordenstam CG, Cannon TD (2002) Contributions of genetic risk and fetal hypoxia to hippocampal volume in patients with schizophrenia or schizoaffective disorder, their unaffected siblings, and healthy unrelated volunteers. Am J Psychiatry 159:1514–1520

    PubMed  Google Scholar 

  • Vannucci SJ, Hagberg H (2004) Hypoxia-ischemia in the immature brain. J Exp Biol 207:3149–3154

    CAS  PubMed  Google Scholar 

  • Venerosi A, Valanzano A, Cirulli F, Alleva E, Calamandrei G (2004) Acute global anoxia during C-section birth affects dopamine-mediated behavioural responses and reactivity to stress. Behav Brain Res 154:155–164

    CAS  PubMed  Google Scholar 

  • Venerosi A, Cutuli D, Chiarotti F, Calamandrei G (2006) C-section birth per se or followed by acute global asphyxia altered emotional behaviour in neonate and adult rats. Behav Brain Res 168:56–63

    PubMed  Google Scholar 

  • Vinogradova OS (2001) Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus 11:578–598

    CAS  PubMed  Google Scholar 

  • Virag L, Szabo C (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54:375–429

    CAS  PubMed  Google Scholar 

  • Wan FJ, Lin HC, Kang BH, Tseng CJ, Tung CS (1999) d-Amphetamine-induced depletion of energy and dopamine in the rat striatum is attenuated by nicotinamide pretreatment. Brain Res Bull 50:167–171

    CAS  PubMed  Google Scholar 

  • Weitzdoerfer R, Pollak A, Lubec B (2004) Perinatal asphyxia in the rat has lifelong effects on morphology, cognitive functions, and behavior. Semin Perinatol 28:249–256

    PubMed  Google Scholar 

  • West JR (1983) Distal infrapyramidal and longitudinal mossy fibers at a midtemporal hippocampal level. Brain Res Bull 10:137–146

    CAS  PubMed  Google Scholar 

  • West JR, Hodges CA, Black AC Jr (1981) Distal infrapyramidal granule cell axons possess typical mossy fiber morphology. Brain Res Bull 6:119–124

    CAS  PubMed  Google Scholar 

  • Williams PA, Dou P, Dudek FE (2004) Epilepsy and synaptic reorganization in a perinatal rat model of hypoxia-ischemia. Epilepsia 45:1210–1218

    PubMed  Google Scholar 

  • Yagita Y, Kitagawa K, Ohtsuki T, Takasawa K, Miyata T, Okano H, Hori M, Matsumoto M (2001) Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. Stroke 32:1890–1896

    CAS  PubMed  Google Scholar 

  • Yamada K, Noda Y, Hasegawa T, Komori Y, Nikai T, Sugihara H, Nabeshima T (1996) The role of nitric oxide in dizocilpine-induced impairment of spontaneous alternation behavior in mice. J Pharm Exp Ther 276:460–466

    CAS  Google Scholar 

  • Yan Q, Briehl M, Crowley CL, Payne CM, Bernstein H, Bernstein C (1999) The NAD+ precursors, nicotinic acid and nicotinamide upregulate glyceraldehyde-3-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase mRNA in Jurkat cells. Biochem Biophys Res Commun 255:133–136

    CAS  PubMed  Google Scholar 

  • Yang J, Klaidman LK, Chang ML, Kem S, Sugawara T, Chan P, Adams JD Jr (2002) Nicotinamide therapy protects against both necrosis and apoptosis in a stroke model. Pharmacol Biochem Behav 73:901–910

    CAS  PubMed  Google Scholar 

  • Zappone CA, Sloviter RS (2004) Transmellar disinhibition in the rat hippocampal dentate gyrus after seizure-induced degeneration of vulnerable hilar neurons. J Neurosci 24:853–864

    CAS  PubMed  Google Scholar 

  • Zhang J, Pieper A, Snyder SH (1995) Poly(ADP-ribose) synthetase activation: an early indicator of neurotoxic DNA damage. J Neurochem 65:1411–1414

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Yang GY, Ahlemeyer B, Pang L, Che XM, Culmsee C, Klumpp S, Krieglstein J (2002) Transforming growth factor-beta 1 increases bad phosphorylation and protects neurons against damage. J Neurosci 22:3898–3909

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Contract Grant sponsors: FONDECYT (contract Grant numbers 1080447; 11070192) (MH-M, PM, DB); Regione Autonoma della Sardegna for Scientific Cooperation between Italy and Chile (Italy) (contract Grant number LR 19/96; 2003) (MM, MH-M); Atlantic Innovation Fund (Canada) (contract Grant number: 181780) (RAT); International Programme for Scientific cooperation CONICYT/DAAD (number 186-06-2006) (MH-M, PJG-H); NGFN + (BMBF)-TP9-Germany (PJG-H). The excellent technical and secretarial help from Mr. Juan Santibañez, Ms. Carmen Almeyda and Ms. Ana Maria Mendez is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Herrera-Marschitz.

Additional information

P. Morales and N. Simola contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales, P., Simola, N., Bustamante, D. et al. Nicotinamide prevents the long-term effects of perinatal asphyxia on apoptosis, non-spatial working memory and anxiety in rats. Exp Brain Res 202, 1–14 (2010). https://doi.org/10.1007/s00221-009-2103-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-2103-z

Keywords

Navigation