Skip to main content
Log in

Changes in Kolmer Cells in SHR Rats after Cerebral Ischemia

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Kolmer cells (epiplexus macrophages) constitute the least studied population among the phagocytosing cells in the mammalian brain. We report here studies of the reactions of these cells to ischemic brain injury induced by brief termination of the blood supply in the basin of the middle cerebral artery. These studies used rats of spontaneously hypertensive strain SHR and normotensive WKY rats. Kolmer cells in normotensive WKY animals had small volumes of perinuclear cytoplasm with concentration of Iba-1 protein in the cortical layer and typical fine and sometimes tortuous processes. Moderate activation induced by increased arterial pressure in control SHR rats was accompanied by an increase in the volume of perinuclear cytoplasm and the appearance of numerous straight fine processes. Further activation induced by ischemia led to loss of processes, cells taking up a round shape. These structural rearrangements were accompanied by disappearance of the Iba-1 protein concentration gradient in the cytoplasm. This study also provided the first observation of the intranuclear accumulation of cytoplasmic Iba-1 protein in Kolmer cells, regardless of their activation, indicating that this protein is multifunctional within the cells. These results provide evidence that Kolmer cells are involve in the responses of the cerebral brain to injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. S. Alekseeva, O. V. Kirik, E. G. Gilerovich, and D. E. Korzhevskii, “Microglia of the Brain: Origin, Structure, Functions,” J. Evol. Biochem. Physiol., 55, 257–268 (2019).

    Article  Google Scholar 

  2. T. Goldmann, P. Wieghofer, M. J. Jordao, et al., “Origin, fate and dynamics of macrophages at central nervous system interfaces,” Nat. Immunol., 17, No. 7, 797–805 (2016).

    Article  CAS  Google Scholar 

  3. E. A. Ling, “Ultrastructure and origin of epiplexus cells in the telencephalic choroid plexus of postnatal rats studied by intravenous injection of carbon particles,” J. Anat, 129, No. 3, 479–492 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. O. J. Tamega, L. F. Tirapelli, and S. Petroni, “Scanning electron microscopy study of the choroid plexus in the monkey (Cebus apella apella),” Arq. Neuropsiquiatr., 58, No. 3B, 820–825 (2000).

    Article  CAS  Google Scholar 

  5. Y. Wan, Y. Hua, H. J. L. Garton, et al., “Activation of epiplexus macrophages in hydrocephalus caused by subarachnoid hemorrhage and thrombin,” CNS Neurosci. Ther., 25, No. 10, 1134–1141 (2019).

    Article  CAS  Google Scholar 

  6. D. E. Korzhevskii and “The choroid plexus and structural organization of the blood-CSF barrier in humans,” Regionarn. Krovoobrashch. Mikrotsirkulyats., 2, No. 1, 5–14 (2003).

  7. W. L. Maxwell, I. G. Hardy, C. Watt, et al., “Changes in the choroid plexus, responses by intrinsic epiplexus cells and recruitment from monocytes after experimental head acceleration injury in the non-human primate,” Acta Neuropathol., 84, No. 1, 78–84 (1992).

    Article  CAS  Google Scholar 

  8. A. Peters and R. C. Swan, “The choroid plexus of the mature and aging rat: the choroidal epithelium,” Anat. Rec., 194, No. 3, 325–353 (1979).

    Article  CAS  Google Scholar 

  9. A. Chamorro, A. Meisel, A. M. Planas, et al., “The immunology of acute stroke,” Nat. Dev. Neurol., 8, No. 7, 401–410 (2012).

    Article  CAS  Google Scholar 

  10. C. Iadecola and J. Anrather, “The immunology of stroke: from mechanisms to translation,” Nat. Med., 17, No. 7, 796–808 (2011).

    Article  CAS  Google Scholar 

  11. X. Y. Xiong, L. Liu, and Q. W. Yang, “Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke,” Prog. Neurobiol., 142, 23–44 (2016).

    Article  CAS  Google Scholar 

  12. J. Pedragosa, A. Salas-Perdomo, M. Gallizioli, et al., “CNS-border associated macrophages respond to acute ischemic stroke attracting granulocytes and promoting vascular leakage,” Acta Neuropathol. Comm., 6, No. 1, 76 (2018).

  13. M. Joukal, I. Klusakova, P. Solar, et al., “Cellular reactions of the choroid plexus induced by peripheral nerve injury,” Neurosci. Lett., 628, 73–77 (2016).

    Article  CAS  Google Scholar 

  14. K. Okamoto and K. Aoki, “Development of a strain of spontaneously hypertensive rats,” Jpn. Circ. J., 27, 282–293 (1963).

    Article  CAS  Google Scholar 

  15. D. A. Zhuravlev, “Models of arterial hypertension. Spontaneously hypertensive rats,” Arterial. Gipertenz., 15, No. 6, 721–723 (2009).

    Article  Google Scholar 

  16. D. E. Korzhevskii, O. V. Kirik, A. E. Baisa, and T. D. Vlasov, “Simulation of unilateral ischemic injury to the striatal neurons inflicted by short-term occlusion of the middle cerebral artery,” Bull. Exp. Biol. Med., 147, No. 2, 255–256 (2009).

    Article  CAS  Google Scholar 

  17. D. E. Korzhevskii, E. G. Sukhorukova, O. V. Kirik, and I. P. Grigorev, “Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde,” Eur. J. Histochem., 59, No. 3, 233–237 (2015).

    Article  Google Scholar 

  18. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, San Diego (1998), 4th ed.

    Google Scholar 

  19. D. E. Korzhevskii and O. V. Kirik, “Brain microglia and microglial markers,” Neurosci. Behav. Physiol., 46, No. 3, 284–290 (2016).

    Article  CAS  Google Scholar 

  20. M. D. Abramoff, P. J. Magalhaes, and S. J. Ram, “Image processing with ImageJ,” Biophotonics Internat., 11, No. 7, 36–42 (2004).

    Google Scholar 

  21. K. Ohsawa, Y. Imai, H. Kanazawa, et al., “Involment of Iba1 in membrane ruffling and phagocytosis of macrophages/microglia,” J. Cell Sci., 133, No. 17, 3073–3084 (2000).

    Article  Google Scholar 

  22. K. Ohsawa, Y. Imai, Y. Sasaki, and S. Kohsaka, “Microglia/macrophages- specific protein Iba1 binds to fimbrin and enhances its actin-bundling activity,” J. Neurochem., 88, No. 4, 844–856 (2004).

    Article  CAS  Google Scholar 

  23. H. Al-Sarraf and L. Philip, “Effect of hypertension on the integrity of blood brain and blood CSF barriers, cerebral blood flow and CSF secretion in the rat,” Brain Res., 975, No. 1–2, 179–188 (2003).

    Article  CAS  Google Scholar 

  24. E. A. Ling, C. Y. Tseng, and W. C. Wong, “An electron microscopical study of the epiplexus and supraependymal cells in the prenatal rat brain following a maternal injection of 6-aminonicotinamide,” J. Anat, 140, 119–129 (1985)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. C. Gu, X. Hao, J. Li, et al., “Effects of minocycline on epiplexus macrophage activation, choroid plexus injury and hydrocephalus development in spontaneous hypertensive rats,” J. Cereb. Blood Flow Metab., 39, No. 10, 1936–1948 (2019).

    Article  CAS  Google Scholar 

  26. A. R. Patel, R. Ritzel, L. D. McCullough, and F. Liu, “Microglia and ischemic stroke: a double-edged sword,” Int. J. Physiol. Pathophysiol. Pharmacol., 5, No. 2, 73–90 (2013).

    PubMed  PubMed Central  Google Scholar 

  27. D. Ito, K. Tanaka, S. Suzuki, et al., “Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain,” Stroke, 32, No. 5, 1208–1215 (2001).

    Article  CAS  Google Scholar 

  28. D. E. Korzhevskii, O. V. Kirik, E. G. Sukhorukova, and M. A. Syrtsova, “Microglia of the human substantia nigra,” Med. Akad. Zh., 14, No. 4, 68–72 (2014).

    Google Scholar 

  29. D. E. Korzhevskii, O. V. Kirik, O. S. Alekseeva, et al., “Intranuclear accumulation of Iba-1 protein in microgliocytes in the human brain,” Morfologiya, 149, No. 2, 73–76 (2016); Neurosci. Behav. Physiol., 47, No. 4, 435–437 (2017).

  30. D. E. Korzhevskii, I. P. Grigor’ev, V. V. Gusel’nikova, et al., “Immunohistochemical markers for neurobiology,” Med. Akad. Zh., 19, No. 4, 7–24 (2019).

    Google Scholar 

  31. J. O. Schulze, C. Quedenau, and Y. Roske, “Structural and functional characterization of human Iba proteins,” FEBS J., 275, No. 18, 4627–4640 (2008).

    Article  CAS  Google Scholar 

  32. L. M. Berglund, O. Kotova, P. Osmark, et al., “NFAT regulates the expression of AIF-1 and IRT-1: yin and yang splice variants of neointima formation and atherosclerosis,” Cardiovasc. Res., 93, No. 3, 414–423 (2012).

    Article  CAS  Google Scholar 

  33. P. S. Subramaniam, M. M. Green, J. Larkin, et al., “Nuclear translocation of IFN-gamma is an intrinsic requirement for its biologic activity and can be driven by a heterologous nuclear localization sequence,” J. Interferon Cytokine Res., 21, No. 11, 951–959 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Kirik.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 107, No. 2, pp. 177–186, February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirik, O.V., Tsyba, D.L., Alekseeva, O.S. et al. Changes in Kolmer Cells in SHR Rats after Cerebral Ischemia. Neurosci Behav Physi 51, 1148–1152 (2021). https://doi.org/10.1007/s11055-021-01174-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01174-3

Keywords

Navigation