Skip to main content
Log in

IEM-1925, a Glutamate Receptor Channel Blocker, Increases the Latent Period and Decreases the Duration of Status Epilepticus in Rats in a Lithium-Pilocarpine Model of Epilepsy

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Chronic experiments on male Wistar and Krushinskii–Molodkina rats, the latter having an inherited predisposition for audiogenic convulsions, addressed the effects of glutamate receptor antagonist IEM-1925 – which acts on both NMDA and Ca2+-permeable AMPA/kainate receptors – on brain electrical activity during the development of pilocarpine-induced status epilepticus (SE). Electrograms were recorded from the caudate nucleus, hippocampus, and the somatosensory, visual, and auditory areas of the cortex. The sequence of SE phase changes identified from electrogram patterns was found not to change on exposure to this blocker. In addition, IEM-1925 weakened the behavioral motor convulsive signs of SE in rats, decreasing seizure intensity from 8 to 4 points on the Pinel and Rovner [1978] scale. Furthermore, the latent period of onset of epileptiform activity in Krushinskii–Molodnika rats after administration of pilocarpine increased by 40% on the background of IEM-1925 at a dose of 10 mg/kg (on average from 12.8 ± 1.1 to 18.0 ± 2.1 min), with an almost two-fold increase in Wistar rats (from 22.5 ± 0.2 to 43.5 ± 3.7 min). The mean durations of SE after IEM-1925 (10 mg/kg) in Krushinskii–Molodnika and Wistar rats were 4.5–5 times shorter than without blocker. The data obtained here provide evidence that combined blockade of NMDA and Ca2+-permeable AMPA/kainate glutamate receptors, although unable to prevent onset of pilocarpine-induced SE, increased the latent period of the onset of status and significantly decreased both individual phase durations and the total duration of SE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. S. Meldrum, “Glutamate as a neurotransmitter in the brain: review of physiology and pathology,” J. Nutr., 130. No. 4S, Supplement, 1007S–10015S (2000).

  2. S. R. Platt, “The role of glutamate in central nervous system health and disease – a review,” Vet. J., 173, No. 2, 278–286 (2007).

    Article  CAS  Google Scholar 

  3. Y. Zhou and N. C. Danbolt, “Glutamate as a neurotransmitter in the healthy brain,” J. Neural Transm. (Vienna), 121, No. 8, 799–817 (2014).

    Article  CAS  Google Scholar 

  4. S. F. Traynelis, L. P. Wollmuth, C. J. McBain, et al., “Glutamate receptor ion channels: structure, regulation, and function,” Pharmacol. Rev., 62, No. 3, 405–496 (2010).

    Article  CAS  Google Scholar 

  5. C. G. Parsons, W. Danysz, and G. Quack, “Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist – a review of preclinical data,” Neuropharmacology, 38, No. 6, 735–767 (1999).

  6. M. A. Rogawski and S. D. Donevan, “AMPA receptors in epilepsy and as targets for antiepileptic drugs,” Adv. Neurol., 79, 947–963 (1999).

    CAS  PubMed  Google Scholar 

  7. J. P. Leite, N. Garcia-Cairasco, and E. A. Cavalheiro, “New insights from the use of pilocarpine and kainate models,” Epilepsy Res., 50, No. 1–2, 93–103 (2002).

    Article  CAS  Google Scholar 

  8. C. L. Faingold, “Emergent properties of CNS neuronal networks as targets for pharmacology: application to anticonvulsant drug action,” Prog. Neurobiol., 72, No. 1, 55–85 (2004).

    Article  CAS  Google Scholar 

  9. C. L. Faingold, M. E. Randall, D. K. Naritoku, and C. A. Boersma Anderson, “Noncompetitive and competitive NMDA antagonists exert anticonvulsant effects by actions on different sites within the neuronal network for audiogenic seizures,” Exp. Neurol., 119, No. 2, 198–204 (1993).

    Article  CAS  Google Scholar 

  10. S. I. Vataev, E. P. Zhabko, N. Ya. Lukomskaya, et al., “Effects of memantine on convulsive reactions and the organization of the sleep–waking cycle in Krushinskii–Molodkina rats with an inherited predisposition to audiogenic convulsions,” Ros. Fiziol. Zh., 95, No. 8, 802–812 (2009); Neurosci. Behav. Physiol., 40, No. 8, 913–919 (2010).

  11. N. Ya. Lukomskaya, S. I. Vataev, E. P. Zhabko, and L. G. Magazanik, “Effects of ionotropic glutamate receptor channel blockers on audiogenic convulsive reactions in Krushinskii–Molodkina rats,” Ros. Fiziol. Zh., 98, No. 4, 449–460 (2012); Neurosci. Behav. Physiol., 44, No. 1, 79–86 (2014).

  12. N. Ya. Lukomskaya, N. I. Rukoyatkina, L. V. Gorbunova, et al., “Studies of the role of NMDA and AMPA glutamate receptors in the mechanisms of corasole convulsions in mice,” Ros. Fiziol. Zh., 89, No. 3, 292–301 (2003).

    Google Scholar 

  13. K. Kh. Kim, A. V. Zaitsev, V. V. Lavrent’eva, et al., “Effects of ionotropic glutamate receptor blockers on pentylenetetrazole-induced seizures in Krushinskii–Molodkina rats,” Ros. Fiziol. Zh., 98, No. 12, 1520–1529 (2012); Neurosci. Behav. Physiol., 44, No. 8, 945–950 (2014).

  14. S. Yamaguchi, S. D. Donevan, and M. A. Rogawski, “Anticonvulsant activity of AMPA/kainate antagonists: comparison of GYKI 52466 and NBOX in maximal electroshock and chemoconvulsant seizure models,” Epilepsy Res., 15, No. 3, 179–184 (1993).

    Article  CAS  Google Scholar 

  15. G. De Sarro, G. Ferreri, P. Gareri, et al., “Comparative anticonvulsant activity of some 2,3-benzodiazepine derivatives in rodents,” Pharmacol. Biochem. Behav., 74, No. 3, 595–602 (2003).

    Article  Google Scholar 

  16. M. A. Rogawski, “AMPA receptors as a molecular target in epilepsy therapy,” Acta Neurol. Scand., Supplement, 197, 9–18 (2013).

  17. S. Yasuda, N. Ishida, A. Higashiyama, et al., “Characterization of audiogenic-like seizures in naive rats evoked by activation of AMPA and NMDA receptors in the inferior colliculus,” Exp. Neurol., 164, No. 2, 396–406 (2000).

    Article  CAS  Google Scholar 

  18. G. Ferreri, A. Chimirri, E. Russo, et al., “Comparative anticonvulsant activity of N-acetyl-1-aryl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline derivatives in rodents,” Pharmacol. Biochem. Behav., 77, No. 1, 85–94 (2004).

    Article  CAS  Google Scholar 

  19. A. Higashiyama, N. Ishida, T. Nishimura, et al., “NMDA receptors in the inferior colliculus are critically involved in audiogenic seizures in the adult rats with neonatal hypothyroidism,” Exp. Neurol., 153, No. 1, 94–101 (1998).

    Article  CAS  Google Scholar 

  20. J. Filakovszky, S. Kantor, P. Halasz, and G. Bagdy, “8-OH-DPAT and MK-801 affect epileptic activity independently of vigilance,” Neurochem. Int., 38, No. 7, 551–556 (2001).

    Article  CAS  Google Scholar 

  21. G. C. Ormandy, R. S. Jope, and O. C. Snead, 3rd, “Anticonvulsant actions of MK-801 on the lithium– pilocarpine model of status epilepticus in rats,” Exp. Neurol., 106, No. 2, 172–180 (1989).

    Article  CAS  Google Scholar 

  22. N. Y. Walton and D. M. Treiman, “Motor and electroencephalographic response of refractory experimental status epilepticus in rats to treatment with MK-801, diazepam, or MK-801 plus diazepam,” Brain Res., 553, No. 1, 97–104 (1991).

    Article  CAS  Google Scholar 

  23. M. S. Starr and B. S. Starr, “The new competitive NMDA receptor antagonist CGP 40116 inhibits pilocarpine- induced limbic motor seizures and unconditioned motor behaviour in the mouse,” Pharmacol. Biochem. Behav., 47, No. 1, 127–131 (1994).

    Article  CAS  Google Scholar 

  24. M. G. Lee, J. Y. Chou, K. H. Lee, et al., “MK-801 augments pilocarpine-induced electrographic seizure but protects against brain damage in rats,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 21, No. 2, 331–344 (1997).

    Article  CAS  Google Scholar 

  25. S. I. Vataev, A. V. Zaitsev, N. Ya. Lukomskaya, and L. G. Magazanik, “The NMDA receptor channel blockers memantine and IEM–1921 decrease the duration of status epilepticus in Wistar and Krushinskii–Molodkina rats in a lithium–pilocarpine model,” Ros. Fiziol. Zh., 105, No. 1, 62–75 (2019); Neurosci. Behav. Physiol., 50, No. 3, 374–383 (2020).

  26. R. Jakus, M. Graf, R. D. Ando, et al., “Effect of two non-competitive AMPA receptor antagonists GYKI 52466 and GYKI 53405 on vigilance, behavior and spikewave discharges in a genetic rat model of absence epilepsy,” Brain Res., 22, No. 2, 236–244 (2004).

    Article  Google Scholar 

  27. R. Citraro, E. Russo, S. Gratteri, et al., “Effects of non-competitive AMPA receptor antagonists injected into some brain areas of WAG/Rij rats, an animal model of generalized absence epilepsy,” Neuropharmacology, 51, No. 6, 1058–1067 (2006).

  28. T. Hanada, K. Ido, and T. Kosasa, “Effect of perampanel, a novel AMPA antagonist, on benzodiazepine-resistant status epilepticus in a lithium–pilocarpine rat model,” Pharmacol. Res. Perspect., 2, No. 5, e00063 (2014).

  29. A. Leo, G. Giovannini, E. Russo, and S. Meletti, “The role of AMPA receptors and their antagonists in status epilepticus,” Epilepsia, 59, No. 6, 1098–1108 (2018).

    Article  Google Scholar 

  30. H. Potschka and E. Trinka, “Perampanel: Does it have broad-spectrum potential?” Epilepsia, 60, No. 1, 22–36 (2019).

  31. N. Ya. Lukomskaya, N. I. Rukoyatkina, L. V. Gorbunova, et al., “Comparison of anticonvulsant activity of organic mono- and dications and their potency to inhibit NMDA and AMPA glutamate receptors,” Ros. Fiziol. Zh., 88, No. 9, 1161–1171 (2002).

    Google Scholar 

  32. K. V. Bolshakov, D. B. Tikhonov, V. E. Gmiro, and L. G. Magazanik, “Different arrangement of hydrophobic and nucleophilic components of channel binding sites in N-methyl-D-aspartate and AMPA receptors of rat brain is revealed by channel blockade,” Neurosci. Lett., 291, No. 2, 101–104 (2000).

    Article  CAS  Google Scholar 

  33. K. V. Bolshakov, K. Kh. Kim, N. N. Potapjeva, et al., “Design of antagonists for NMDA and AMPA receptors,” Neuropharmacology, 49, No. 2, 144–155 (2005).

    Article  CAS  Google Scholar 

  34. A. V. Zaitsev, K. K. Kim, I. M. Fedorova, et al., “Specific mechanism of use-dependent channel block of calcium-permeable AMPA receptors provides activity-dependent inhibition of glutamatergic neurotransmission,” J. Physiol., 589, No. 7, 1587–1601 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, San Diego (1997); Compact 3rd edition on CD ROM.

  36. S. I. Vataev, A. V. Zaitsev, K. Kh. Kim, et al., “Changes in brain electrical activity on formation of status epilepticus in a lithium-pilocarpine model in rats with different levels of convulsive readiness,” Ros. Fiziol. Zh., 102, No. 6, 633–646 (2016); Neurosci. Behav. Physiol., 47, No. 9, 1019–1028 (2017).

  37. J. P. Pinel and L. I. Rovner, “Experimental epileptogenesis: kindling-induced epilepsy in rats,” Exp. Neurol., 58, No. 2, 190–202 (1978).

    Article  CAS  Google Scholar 

  38. M. S. Costa, J. B. T. Rocha, S. R. Perosa, et al., “Pilocarpine induced status epilepticus increases glutamate release in rat hippocampal synaptosomes,” Neurosci. Lett., 356, No. 1, 41–44 (2004).

    Article  CAS  Google Scholar 

  39. F. A. Scorza, R. M. Arida, M. G. Naffah-Mazzacoratti, et al., “The pilocarpine model of epilepsy: what have we learned?” Ann. Acad. Bras. Cienc., 81, No. 3, 345–365 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Vataev.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 107, No. 1, pp. 55–69, January, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vataev, S.I., Lukomskaya, N.Y. & Magazanik, L.G. IEM-1925, a Glutamate Receptor Channel Blocker, Increases the Latent Period and Decreases the Duration of Status Epilepticus in Rats in a Lithium-Pilocarpine Model of Epilepsy. Neurosci Behav Physi 51, 976–984 (2021). https://doi.org/10.1007/s11055-021-01155-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01155-6

Keywords

Navigation