Skip to main content
Log in

The NMDA Receptor Channel Blockers Memantine and IEM-1921 Decrease the Duration of Status Epilepticus in Wistar and Krushinskii–Molodkina Rats in a Lithium-Pilocarpine Model

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Chronic experiments on Wistar and Krushinskii–Molodkina rats, which have an inherited predisposition to audiogenic convulsions, addressed the effects of preliminary administration of memantine and IEM-1921 – NMDA glutamate receptor channel blockers – on brain electrical activity on development of status epilepticus (SE) induced by pilocarpine. Electrograms were recorded from the hippocampus, caudate nucleus, and the somatosensory, visual, and auditory areas of the cortex. The nature and sequence of changes in the phases of SE identifi ed from electrogram patterns were not altered by blockers. In addition, the latent period of the onset of epileptiform activity on the EEG after administration of pilocarpine to Wistar rats decreased almost two-fold (to 10–15 min) after administration of memantine (5 mg/kg) or IEM-1921 (5 mg/kg). In Krushinskii–Molodkina rats, the latent period of development of epileptiform activity was initially shorter (13 ± 2 min) and was not altered by use of blockers. The mean durations of SE after administration of memantine to Wistar and Krushinskii–Molodkina rats were 2 and 3 times, respectively, shorter than without blocker, while durations were reduced seven-fold by IEM-1921. NMDA receptor blockers also signifi cantly weakened behavioral motor convulsions, decreasing the intensity of convulsions from 8 to 4 points on the Pinel and Rovner [1978] scale. These data provide evidence that blockade of NMDA receptors did not prevent the typical development of pilocarpine-induced SE, though duration was signifi cantly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mehta, M. Prabhakar, P. Kumar, et al., “Excitotoxicity: bridge to various triggers in neurodegenerative disorders,” Eur. J. Pharmacol., 698, No. 1–3, 6–18 (2013).

    Article  CAS  Google Scholar 

  2. I. R. Stojanovic, M. Kostic, and S. Ljubisavljevic, “The role of glutamate and its receptors in multiple sclerosis,” J. Neural Transm. (Vienna), 121, No. 8, 945–955 (2014).

    Article  CAS  Google Scholar 

  3. C. G. Parsons, W. Danysz, and G. Quack, “Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist – a review of preclinical data,” Neuropharmacology, 38, No. 6, 735–767 (1999).

    Article  Google Scholar 

  4. J. P. Leite, N. Garcia-Cairasco, and E. A. Cavalheiro, “New insights from the use of pilocarpine and kainate models,” Epilepsy Res., 50, No. 1–2, 93–103 (2002).

    Article  CAS  Google Scholar 

  5. N. Ya. Lukomskaya, N. I. Rukoyatkina, L. V. Gorbunova, et al., “Comparison of the anticonvulsant activity of organic mono- and dications with their ability to inhibit NMDA and AMPA glutamate receptors,” Ros. Fiziol. Zh., 88, No. 9, 1161–1171 (2002).

  6. N. Ya. Lukomskaya, N. I. Rukoyatkina, L. V. Gorbunova, et al., “Studies of the roles of NMDA and AMPA glutamate receptors in the mechanism of corasol convulsions in mice,” Ros. Fiziol. Zh., 89, No. 3, 292–301 (2003).

  7. M. Ghasemi and S. C. Schachter, “The NMDA receptor complex as a therapeutic target in epilepsy: a review,” Epilepsy Behav., 22, No. 4, 617–640 (2011).

    Article  Google Scholar 

  8. M. A. Rogawski, “AMPA receptors as a molecular target in epilepsy therapy,” Acta Neurol. Scand., 197, Supplement, 9–18 (2013).

  9. C. L. Faingold, M. E. Randall, D. K. Naritoku, and C. A. Boersma Anderson, “Noncompetitive and competitive NMDA antagonists exert anticonvulsant effects by actions on different sites within the neuronal network for audiogenic seizures,” Exp. Neurol., 119, No. 2, 198–204 (1993).

    Article  CAS  Google Scholar 

  10. C. L. Faingold, “Emergent properties of CNS neuronal networks as targets for pharmacology: application to anticonvulsant drug action,” Prog. Neurobiol., 72, No. 1, 55–85 (2004).

    Article  CAS  Google Scholar 

  11. S. I. Vataev, E. P. Zhabko, N. Ya. Lukomskaya, et al., “Effects of memantine on convulsive reactions and the organization of sleep in Krushinskii–Molodkina rats with inherited predisposition to audiogenic convulsions,” Ros. Fiziol. Zh., 95, No. 8, 802–812 (2009).

  12. N. Y. Lukomskaya, S. I. Vataev, E. P. Zhabko, and L. G. Magazanik, “The effects of ionotropic glutamate receptor channel blockers on audiogenic convulsive reactions in Krushinskii–Molodkina rats,” Ros. Fiziol. Zh., 98, No. 4, 449–460 (2012).

    Google Scholar 

  13. K. Kh. Kim, A. V. Zaitsev, V. V. Lavrent’eva, et al., “Effects of ionotropic glutamate receptor blockers on pentylenetetrazole-induced convulsions in Krushinskii–Molodkina rats,” Ros. Fiziol. Zh., 98, No. 12, 1520–1529 (2012).

    CAS  Google Scholar 

  14. J. Filakovszky, S. Kantor, P. Halasz, and G. Bagdy, “8-OH-DPAT and MK-801 affect epileptic activity independently of vigilance,” Neurochem. Int., 38, No. 7, 551–556 (2001).

    Article  CAS  Google Scholar 

  15. G. C. Ormandy, R. S. Jope, and O. C. Snead, “Anticonvulsant actions of MK-801 on the lithium-pilocarpine model of status epilepticus in rats,” Exp. Neurol., 106, No. 2, 172–180 (1989).

    Article  CAS  Google Scholar 

  16. N. Y. Walton and D. M. Treiman, “Motor and electroencephalographic response of refractory experimental status epilepticus in rats to treatment with MK-801, diazepam, or MK-801 plus diazepam,” Brain Res., 553, No. 1, 97–104 (1991).

    Article  CAS  Google Scholar 

  17. P. Hughes, D. Young, and M. Dragunow, “MK-801 sensitizes rats to pilocarpine induced limbic seizures and status epilepticus,” Neuroreport, 4, No. 3, 314–316 (1993).

  18. M. S. Starr and B. S. Starr, “Glutamate-dopamine interactions in the production of pilocarpine motor seizures in the mouse,” J. Neural, Transm. (Vienna) Park. Dis. Dement. Sect., 6, No. 2, 109–117 (1993).

  19. M. S. Starr and B. S. Starr, “The new competitive NMDA receptor antagonist CGP 40116 inhibits pilocarpine-induced limbic motor seizures and unconditioned motor behavior in the mouse,” Pharmacol. Biochem. Behav., 47, No. 1, 127–131 (1994).

    Article  CAS  Google Scholar 

  20. M. G. Lee, J. Y. Chou, K. H. Lee, et al., “MK-801 augments pilocarpine- induced electrographic seizure but protects against brain damage in rats,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 21, No. 2, 331–344 (1997).

    Article  CAS  Google Scholar 

  21. I. Smolders, G. M. Khan, J. Manil, et al., “NMDA receptor-mediated pilocarpine-induced seizures: characterization in freely moving rats by microdialysis,” Br. J. Pharmacol., 121, No. 6, 1171–1179 (1997).

    Article  CAS  Google Scholar 

  22. A. C. Rice and R. J. DeLorenzo, “N-methyl-D-aspartate receptor activation regulates refractoriness of status epilepticus to diazepam,” Neuroscience, 93, No. 1, 117–123 (1999).

  23. S. I. Vataev, A. V. Zaitsev, K. Kh. Kim, et al., “Changes in brain electrical activity on formation of status epilepticus in a lithium-pilocarpine model in rats with different levels of convulsive readiness,” Ros. Fiziol. Zh., 102, No. 6, 633–646 (2016).

    CAS  Google Scholar 

  24. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, San Diego (1997), Compact 3rd ed. on CD-ROM.

  25. J. P. Pinel and L. I. Rovner, “Experimental epileptogenesis: kindling-induced epilepsy in rats,” Exp. Neurol., 58, No. 2, 190–202 (1978).

    Article  CAS  Google Scholar 

  26. G. M. Khan, I. Smolders, H. Lindekens, et al., “Effects of diazepam on extracellular brain neurotransmitters in pilocarpine-induced seizures in rats,” Eur. J. Pharmacol., 373, No. 2–3, 153–161 (1999).

    Article  CAS  Google Scholar 

  27. S. A. Chepurnov, N. E. Chepurnova, O. M. Redkozubova, and S. A. Saakyan, “Status epilepticus – new mechanisms and pathways to inhibition (lithium-pilocarpine model),” Usp. Fiziol. Nauk., 36, No. 1, 68–84 (2005).

    CAS  PubMed  Google Scholar 

  28. L. Turski, B. S. Meldrum, E. A. Cavalheiro, et al., “Paradoxical anticonvulsant activity of the excitatory amino acid N-methyl-Daspartate in the rat caudate-putamen,” Proc. Natl. Acad. Sci. USA, 84, No. 6, 1689–1693 (1987).

    Article  CAS  Google Scholar 

  29. M. H. Millan, A. G. Chapman, and B. S. Meldrum, “Extracellular amino acid levels in hippocampus during pilocarpine-induced seizures,” Epilepsy Res., 14, No. 2, 139–148 (1993).

    Article  CAS  Google Scholar 

  30. M. S. Costa, J. B. T. Rocha, S. R. Perosa, et al., “Pilocarpine induced status epilepticus increases glutamate release in rat hippocampal synaptosomes,” Neurosci. Lett., 356, No. 1, 41–44 (2004).

    Article  CAS  Google Scholar 

  31. V. V. Zhulin and M. G. Pleskacheva, “Binding of GABA and diazepam in the brain of Krushinskii–Molodkina rats,” Neirokhimiya, 10, No. 1–2, 10–17 (1991).

  32. C. L. Faingold, C. A. Boersma Anderson, and D. M. Caspary, “Involvement of GABA in acoustically-evoked inhibition in inferior colliculus neurons,” Hear. Res., 52, No. 1, 201–216 (1991).

    Article  CAS  Google Scholar 

  33. L. R. Molnar, W. W. Fleming, and D. A. Taylor, “Alterations in neuronal gamma-aminobutyric acid(A) receptor responsiveness in genetic models of seizure susceptibility with different expression patterns,” J. Pharmacol. Exp. Ther., 295, No. 3, 1258–1266 (2000).

    CAS  PubMed  Google Scholar 

  34. C. L. Faingold, “Role of GABA abnormalities in the inferior colliculus pathophysiology – audiogenic seizures,” Hear. Res., 168, No. 1–2, 223–237 (2002).

    Article  CAS  Google Scholar 

  35. G. M. Solius, A. V. Revishchin, G. V. Pavlova, and I. I. Poletaeva, “Audiogenic epilepsy and GABAergic system of the colliculus inferior in Krushinsky–Molodkina rats,” Dokl. Biochem. Biophys., 466, 32–34 (2016).

    Article  CAS  Google Scholar 

  36. C. E. Ribak, “An abnormal GABAergic system in the inferior colliculus, provides a basis for audiogenic seizures in genetically epilepsy- prone rats,” Epilepsy Behav., 71, Part B, 160–164 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Vataev.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 105, No. 1, pp. 62–75, January, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vataev, S.I., Zaitsev, A.V., Lukomskaya, N.Y. et al. The NMDA Receptor Channel Blockers Memantine and IEM-1921 Decrease the Duration of Status Epilepticus in Wistar and Krushinskii–Molodkina Rats in a Lithium-Pilocarpine Model. Neurosci Behav Physi 50, 374–383 (2020). https://doi.org/10.1007/s11055-020-00909-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-020-00909-y

Keywords

Navigation