Skip to main content

Advertisement

Log in

Risk-Based Analysis in Mineral Potential Mapping: Application of Quantifier-Guided Ordered Weighted Averaging Method

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

In this work, a quantifier-guided ordered weighted averaging (OWA) method was employed for mineral potential mapping (MPM) in Nowchun Cu–Mo prospect, SE Iran. The proposed knowledge-driven method has the capability of incorporating the geologists’ preference (weight) and attitude toward risk analysis during MPM. Since quantitative determination of OWA parameters is a tough task, employing linguistic quantifiers aid geologists to simply define their desired strategy for MPM. To implement the method, eight weighted criteria spatially associated with mineralization were derived from geological, geochemical and geophysical datasets. The evidential layer integration was implemented using various OWA operators, which is generated by employing seven linguistic quantifiers. As a result, seven mineral potential maps, which report favorability index from 0 to 1, were produced in a spectrum range of risk from extremely optimistic to extremely pessimistic. According to results, the western and southeastern part of the study area were detected as regions with the lowest and highest mineral favorability. For validation, the results of subsequent geological field works and 106 drilled boreholes were taken into account. The evaluation indicated that the mineral potential map based on the “Some” quantifier has the highest correspondence with underground 3D mineralization zones of Cu and Mo. The mineral potential map based on the “Some” quantifier delineated two main prospective zones in the eastern and central-north parts of the study area. The former zone was recently investigated by drilling, but the latter zone was proposed for new drilling operation. Applying the proposed method in each scale of target delineation (a) generates various continuum favorability maps; (b) reveals mineralization patterns in the study area; and (c) provides an opportunity in exploration to select the optimal mineral potential map for detailed exploration tasks regarding the geologists’ attitudes toward risk and project budget.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Abedi, M., Mohammadi, R., Norouzi, G. H., & Mir Mohammadi, M. S. (2016). A comprehensive VIKOR method for integration of various exploratory data in mineral potential mapping. Arabian Journal of Geosciences, 9, 482. https://doi.org/10.1007/s12517-016-2512-9.

    Article  Google Scholar 

  • Abedi, M., & Norouzi, G. H. (2016). A general framework of TOPSIS method for integration of airborne geophysics, satellite imagery, geochemical and geological data. International Journal of Applied Earth Observation and Geoinformation, 46, 31–44.

    Article  Google Scholar 

  • Abedi, M., Norouzi, G. H., & Bahroudi, A. (2012a). Support vector machine for multi-classification of mineral prospectivity areas. Computers & Geosciences, 46, 272–283.

    Article  Google Scholar 

  • Abedi, M., Norouzi, G. H., & Fathianpour, N. (2015). Mineral potential mapping in Central Iran using fuzzy ordered weighted averaging method. Geophysical Prospecting, 63, 461–477.

    Article  Google Scholar 

  • Abedi, M., Norouzi, G. H., & Torabi, S. A. (2013). Clustering of mineral prospectivity area as an unsupervised classification approach to explore copper deposit. Arabian Journal of Geosciences, 6, 3601–3613.

    Article  Google Scholar 

  • Abedi, M., Torabi, S. A., Norouzi, G. H., Hamzeh, M., & Elyasi, G. R. (2012b). PROMETHEE II: A knowledge-driven method for copper exploration. Computers & Geosciences, 46, 255–263.

    Article  Google Scholar 

  • Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists-modeling with GIS. Computer Methods in the Geoscientists, 13, 398.

    Google Scholar 

  • Boroushaki, S., & Malczewski, J. (2008). Implementing an extension of the analytical hierarchy process using ordered weighted averaging operators with fuzzy quantifiers in ArcGIS. Computers & Geosciences, 34, 399–410.

    Article  Google Scholar 

  • Boroushaki, S., & Malczewski, J. (2010). Using the fuzzy majority approach for GIS-based multicriteria group decision-making. Computers & Geosciences, 36, 302–312.

    Article  Google Scholar 

  • Calijuri, M. L., Marques, E. T., Lorentz, J. F., Azevedo, R. F., & Carvalho, C. A. (2004). Multi-criteria analysis for the identification of waste disposal areas. Geotechnical and Geological Engineering, 22, 299–312.

    Article  Google Scholar 

  • Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS. Amsterdam: Elsevier.

    Google Scholar 

  • Carranza, E. J. M. (2010). Improved wildcat modelling of mineral prospectivity. Resource Geology, 60, 129–149.

    Article  Google Scholar 

  • Carranza, E. J. M. (2011). Geocomputation of mineral exploration targets. Computers & Geosciences, 37, 1907–1916.

    Article  Google Scholar 

  • Carranza, E. J. M. (2012). Primary geochemical characteristics of mineral deposits: Implications for exploration. Ore Geology Reviews, 45, 1–4.

    Article  Google Scholar 

  • Carranza, E. J. M. (2015). Data-driven evidential belief modeling of mineral potential using few prospects and evidence with missing values. Natural Resources Research, 24, 291–304.

    Article  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2016). Data-driven predictive modeling of mineral prospectivity using random forests: A case study in Catanduanes Island (Philippines). Natural Resources Research, 25, 35–50.

    Article  Google Scholar 

  • Carranza, E. J. M., Sadeghi, M., & Billay, A. (2015). Predictive mapping of prospectivity for orogenic gold, Giyani greenstone belt (South Africa). Ore Geology Reviews, 71, 703–718.

    Article  Google Scholar 

  • Chen, J., Zhang, X., & Zhu, Q. (2011). Multi-objective decision making for land use planning with ordered weighted averaging method. Systems Engineering Procedia, 2, 434–440.

    Article  Google Scholar 

  • Chen, Y., & Zhu, Q. (2010). Application of GIS-based OWA method to suitability evaluation of construction land in Tangshan city. In 12th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments; and Fourth NASA/ARO/ASCE Workshop on Granular Materials in Lunar and Martian Exploration, March 14–17, 2010. Honolulu, HI.

  • Cheng, Q., & Agterberg, F. (1999). Fuzzy weights of evidence method and its application in mineral potential mapping. Natural Resources Research, 8, 27–35.

    Article  Google Scholar 

  • Cheng, Q., & Zhao, P. (2011). Singularity theories and methods for characterizing mineralization processes and mapping geo-anomalies for mineral deposit prediction. Geoscience Frontiers, 2, 67–79.

    Article  Google Scholar 

  • Costa e Silva, E., Silva, A. M., Toledo, C. L. B., Mol, A. G., Otterman, D. W., & De Souza, S. R. C. (2012). Mineral potential mapping for orogenic gold deposits in the Rio Maria granite greenstone terrane, Southeastern Pará State, Brazil. Economic Geology, 107, 1387–1402.

    Article  Google Scholar 

  • De Araujo, C. C., & Macedo, A. B. (2002). Multicriteria geologic data analysis for mineral favorability mapping: Application to a metal sulphide mineralized area, Ribeira Valley Metallogenic Province, Brazil. Natural Resources Research, 11, 29–43.

    Article  Google Scholar 

  • De Quadros, T. F., Koppe, J. C., Strieder, A. J., & Costa, J. F. (2006). Mineral-potential mapping: A comparison of weights-of-evidence and fuzzy methods. Natural Resources Research, 15, 49–65.

    Article  Google Scholar 

  • Drobne, S., & Lisec, A. (2009). Multi-attribute decision analysis in GIS: Weighted linear combination and ordered weighted averaging. Informatica, 33, 459–474.

    Google Scholar 

  • Eastman, J. (1999). Multi-criteria evaluation and GIS. Geographical information systems, 1, 493–502.

    Google Scholar 

  • Eldrandaly, K. (2013). Developing a GIS-based MCE site selection tool in ArcGIS using COM technology. International Arab Journal of Information Technology, 10, 276–282.

    Google Scholar 

  • Elyasi, G. (2009). Mineral potential mapping in detailed stage using GIS in one of exploration prospects of Kerman Province. Master of Science Thesis, University of Tehran (published in Persian).

  • Ferretti, V., & Pomarico, S. (2013). Ecological land suitability analysis through spatial indicators: An application of the analytic network process technique and ordered weighted average approach. Ecological Indicators, 34, 507–519.

    Article  Google Scholar 

  • Ford, A., & Hart, C. J. (2013). Mineral potential mapping in frontier regions: A Mongolian case study. Ore Geology Reviews, 51, 15–26.

    Article  Google Scholar 

  • Fuller, R. (1996). OWA operators in decision making. Exploring the Limits of Support Systems, 3, 85–104.

    Google Scholar 

  • Gbanie, S. P., Tengbe, P. B., Momoh, J. S., Medo, J., & Kabba, V. T. S. (2013). Modelling landfill location using geographic information systems (GIS) and multi-criteria decision analysis (MCDA): Case study Bo, Southern Sierra Leone. Applied Geography, 36, 3–12.

    Article  Google Scholar 

  • Gorsevski, P. V., Donevska, K. R., Mitrovski, C. D., & Frizado, J. P. (2012). Integrating multi-criteria evaluation techniques with geographic information systems for landfill site selection: A case study using ordered weighted average. Waste Management, 32, 287–296.

    Article  Google Scholar 

  • Harris, J., Grunsky, E., Behnia, P., & Corrigan, D. (2015). Data-and knowledge-driven mineral prospectivity maps for Canada’s North. Ore Geology Reviews, 71, 788–803.

    Article  Google Scholar 

  • Harris, J., Wilkinson, L., Heather, K., Fumerton, S., Bernier, M., Ayer, J., et al. (2001). Application of GIS processing techniques for producing mineral prospectivity maps—A case study: Mesothermal Au in the Swayze Greenstone Belt, Ontario, Canada. Natural Resources Research, 10, 91–124.

    Article  Google Scholar 

  • Hezarkhani, A. (2009). Hydrothermal fluid geochemistry at the Chah-Firuzeh porphyry copper deposit, Iran: Evidence from fluid inclusions. Journal of Geochemical Exploration, 101, 254–264.

    Article  Google Scholar 

  • Hogson, C. (1990). Uses (and abuses) of ore deposit models in mineral exploration. Geoscience Canada, 17, 79–89.

    Google Scholar 

  • Hossaini, S. A., & Abedi, M. (2015). Data envelopment analysis: A knowledge-driven method for mineral prospectivity mapping. Computers & Geosciences, 82, 111–119.

    Article  Google Scholar 

  • Ibrahim, A. M., Bennett, B., & Isiaka, F. (2015). The optimisation of Bayesian classifier in predictive spatial modelling for secondary mineral deposits. Procedia Computer Science, 61, 478–485.

    Article  Google Scholar 

  • Iyer, V., Fung, C. C., Brown, W., & Wong, K. W. (2005). Neural network ensembles based approach for mineral prospectivity prediction. In TENCON 2005 2005 IEEE Region 10. IEEE, pp. 1–5.

  • Jiang, H., & Eastman, J. R. (2000). Application of fuzzy measures in multi-criteria evaluation in GIS. International Journal of Geographical Information Science, 14, 173–184.

    Article  Google Scholar 

  • Keeney, R. L., & Raiffa, H. (1976). Decision with multiple objectives. New York: Wiley.

    Google Scholar 

  • Lee, S., Oh, H. J., Heo, C. H., & Park, I. (2014). A case study for the integration of predictive mineral potential maps. Open Geosciences, 6, 373–392.

    Article  Google Scholar 

  • Leite, E. P., & De Souza Filho, C. R. (2009). Artificial neural networks applied to mineral potential mapping for copper-gold mineralizations in the Carajás Mineral Province, Brazil. Geophysical Prospecting, 57, 1049–1065.

    Article  Google Scholar 

  • Liu, Y., Cheng, Q., Xia, Q., & Wang, X. (2014). Mineral potential mapping for tungsten polymetallic deposits in the Nanling metallogenic belt, South China. Journal of Earth Science, 25, 689–700.

    Article  Google Scholar 

  • Liu, Y., Cheng, Q., Xia, Q., & Wang, X. (2015). The use of evidential belief functions for mineral potential mapping in the Nanling belt, South China. Frontiers of Earth Science, 9, 342–354.

    Article  Google Scholar 

  • Luo, J. (1990). Statistical mineral prediction without defining a training area. Mathematical Geology, 22, 253–260.

    Article  Google Scholar 

  • Luo, X., & Dimitrakopoulos, R. (2003). Data-driven fuzzy analysis in quantitative mineral resource assessment. Computers & Geosciences, 29, 3–13.

    Article  Google Scholar 

  • Magalhaes, L. A., & Souza Filho, C. R. (2012). Targeting of gold deposits in Amazonian exploration frontiers using knowledge-and data-driven spatial modeling of geophysical, geochemical, and geological data. Surveys In Geophysics, 33, 211–241.

    Article  Google Scholar 

  • Makropoulos, C., & Butler, D. (2006). Spatial ordered weighted averaging: Incorporating spatially variable attitude towards risk in spatial multi-criteria decision-making. Environmental Modelling and Software, 21, 69–84.

    Article  Google Scholar 

  • Malczewski, J. (1999). GIS and multicriteria decision analysis. Hoboken: Wiley.

    Google Scholar 

  • Malczewski, J. (2006a). Integrating multicriteria analysis and geographic information systems: The ordered weighted averaging (OWA) approach. International Journal of Environmental Technology and Management, 6, 7–19.

    Article  Google Scholar 

  • Malczewski, J. (2006b). Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis. International Journal of Applied Earth Observation and Geoinformation, 8, 270–277.

    Article  Google Scholar 

  • Malczewski, J., & Liu, X. (2014). Local ordered weighted averaging in GIS-based multicriteria analysis. Annals of GIS, 20, 117–129.

    Article  Google Scholar 

  • Malczewski, J., & Rinner, C. (2005). Exploring multicriteria decision strategies in GIS with linguistic quantifiers: A case study of residential quality evaluation. Journal of Geographical Systems, 7, 249–268.

    Article  Google Scholar 

  • Malczewski, J., & Rinner, C. (2015). Multicriteria decision analysis in geographic information science. Berlin: Springer.

    Book  Google Scholar 

  • Mellers, B. A., & Chang, S. J. (1994). Representations of risk judgments. Organizational Behavior and Human Decision Processes, 57, 167–184.

    Article  Google Scholar 

  • Meng, Y., Malczewski, J., & Boroushaki, S. (2011). A GIS-based multicriteria decision analysis approach for mapping accessibility patterns of housing development sites: A case study in Canmore, Alberta. Journal of Geographic Information System, 3, 50.

    Article  Google Scholar 

  • Merigo, J. M., & Gil-Lafuente, A. M. (2011). Decision-making in sport management based on the OWA operator. Expert Systems with Applications, 38, 10408–10413.

    Article  Google Scholar 

  • Nykänen, V., Groves, D. I., Ojala, V. J., Eilu, P., & Gardoll, S. J. (2008). Reconnaissance-scale conceptual fuzzy-logic prospectivity modelling for iron oxide copper–gold deposits in the northern Fennoscandian Shield, Finland. Australian Journal of Earth Sciences, 55, 25–38.

    Article  Google Scholar 

  • Oh, H. J., & Lee, S. (2010). Application of artificial neural network for gold–silver deposits potential mapping: A case study of Korea. Natural Resources Research, 19, 103–124.

    Article  Google Scholar 

  • Pazand, K., Hezarkhani, A., & Ataei, M. (2012). Using TOPSIS approaches for predictive porphyry Cu potential mapping: A case study in Ahar–Arasbaran area (NW, Iran). Computers & Geosciences, 49, 62–71.

    Article  Google Scholar 

  • Pazand, K., Hezarkhani, A., & Pazand, K. (2013). Predictive mapping for porphyry copper mineralization: A comparison of knowledge-driven and data-driven fuzzy models in Siahrud area, Azarbaijan province, NW Iran. Applied Geomatics, 5, 215–224.

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2004). A hybrid neuro-fuzzy model for mineral potential mapping. Mathematical Geology, 36, 803–826.

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2006a). Bayesian network classifiers for mineral potential mapping. Computers & Geosciences, 32, 1–16.

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2006b). A hybrid fuzzy weights-of-evidence model for mineral potential mapping. Natural Resources Research, 15, 1–14.

    Article  Google Scholar 

  • Rezaei, S., Lotfi, M., Afzal, P., Jafari, M. R., Meigoony, M. S., & Khalajmasoumi, M. (2015). Investigation of copper and gold prospects using index overlay integration method and multifractal modeling in Saveh 1: 100,000 sheet, Central Iran. Gospodarka Surowcami Mineralnymi, 31, 51–74.

    Article  Google Scholar 

  • Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804–818.

    Article  Google Scholar 

  • Roshanravan, B., Aghajani, H., Yousefi, M., & Kreuzer, O. (2018). Particle swarm optimization algorithm for neuro-fuzzy prospectivity analysis using continuously weighted spatial exploration data. Natural Resources Research. https://doi.org/10.1007/s11053-018-9385-4.

    Article  Google Scholar 

  • Saric, V., Nedeljkovic, R., & Colovic, M. (1972). Report on explorations for copper in Nowchun area (pp. 1–39). Geological survey of Iran (GSI) internal report (unpublished).

  • Shabankareh, M., & Hezarkhani, A. (2017). Application of support vector machines for copper potential mapping in Kerman region, Iran. Journal of African Earth Sciences, 128, 116–126.

    Article  Google Scholar 

  • Sridhar, M., Babu, V. R., Chaturvedi, A., & Roy, M. (2015). Predictive GIS modeling from landsat, AGRS, aeromagnetic and ground surveys for uranium exploration—A case study from Sonakhan Block, Chhattisgarh, India. Journal of the Indian Society of Remote Sensing, 43, 347–362.

    Article  Google Scholar 

  • Tangestani, M. H., & Moore, F. (2002). The use of Dempster–Shafer model and GIS in integration of geoscientific data for porphyry copper potential mapping, north of Shahr-e-Babak, Iran. International Journal of Applied Earth Observation and Geoinformation, 4, 65–74.

    Article  Google Scholar 

  • Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Transactions on systems, Man, and Cybernetics, 18, 183–190.

    Article  Google Scholar 

  • Yager, R. R. (1996). Quantifier guided aggregation using OWA operators. International Journal of Intelligent Systems, 11, 49–73.

    Article  Google Scholar 

  • Yager, R. R. (1997). On the inclusion of importances in OWA aggregations. In R. R. Yager & J. Kacprzyk (Eds.), The ordered weighted averaging operators (pp. 41–59). Boston, MA: Springer. https://doi.org/10.1007/978-1-4615-6123-1_5.

    Chapter  Google Scholar 

  • Young, P., Parkinson, S., & Lees, M. (1996). Simplicity out of complexity in environmental modelling: Occam’s razor revisited. Journal of Applied Statistics, 23, 165–210.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015a). Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Computers & Geosciences, 74, 97–109.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015b). Geometric average of spatial evidence data layers: A GIS-based multi-criteria decision-making approach to mineral prospectivity mapping. Computers & Geosciences, 83, 72–79.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015c). Prediction–area (P–A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79, 69–81.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2016). Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25, 3–18.

    Article  Google Scholar 

  • Yousefi, M., & Nykänen, V. (2017). Introduction to the special issue: GIS-based mineral potential targeting. Journal of African Earth Sciences, 128, 1–4.

    Article  Google Scholar 

  • Yuan, F., Li, X., Zhang, M., Jowitt, S. M., Jia, C., Zheng, T., et al. (2014). Three-dimensional weights of evidence-based prospectivity modeling: A case study of the Baixiangshan mining area, Ningwu Basin, Middle and Lower Yangtze Metallogenic Belt, China. Journal of Geochemical Exploration, 145, 82–97.

    Article  Google Scholar 

  • Zadeh, L. A. (1983). A computational approach to fuzzy quantifiers in natural languages. Computers & Mathematics with Applications, 9, 149–184.

    Article  Google Scholar 

  • Zhang, D., Agterberg, F., Cheng, Q., & Zuo, R. (2014). A comparison of modified fuzzy weights of evidence, fuzzy weights of evidence, and logistic regression for mapping mineral prospectivity. Mathematical Geosciences, 46, 869–885.

    Article  Google Scholar 

  • Zhang, N., & Zhou, K. (2015). Mineral prospectivity mapping with weights of evidence and fuzzy logic methods. Journal of Intelligent & Fuzzy Systems, 29, 2639–2651.

    Article  Google Scholar 

  • Zhang, Z., Zuo, R., & Xiong, Y. (2016). A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China. Science China Earth Sciences, 59, 556–572.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support provided by the Departments of Mining Engineering, University of Tehran. We also express our sincere thanks to the National Iranian Copper Industries Company (NICICo) for providing required data. We express our deep gratitude to the all geologists and exploration experts that cooperated for criteria recognition and weights assignment of this analysis. Finally, we thank Prof. Emmanuel John M. Carranza and two reviewers for reading the paper precisely and patiently and for their constructive and valuable comments, which indeed helped us to improve the quality of our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maysam Abedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elyasi, GR., Bahroudi, A. & Abedi, M. Risk-Based Analysis in Mineral Potential Mapping: Application of Quantifier-Guided Ordered Weighted Averaging Method. Nat Resour Res 28, 931–951 (2019). https://doi.org/10.1007/s11053-018-9428-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-018-9428-x

Keywords

Navigation