Skip to main content

Advertisement

Log in

Particle Swarm Optimization Algorithm for Neuro-Fuzzy Prospectivity Analysis Using Continuously Weighted Spatial Exploration Data

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Classification of spatial exploration data for exploration targeting using neuro-fuzzy models means that the many spatial values have to be simplified and assigned to a few classes. The simplification of complex geological information, which illustrates a high degree of variability, results in overly simplistic models based on the presumption of homogeneous earth. However, such an assumption is not valid. In this paper, we illustrate the superiority of using continuously weighted spatial evidence values compared to discretely weighted evidence data, and how continuously weighted spatial evidence values can increase the efficiency of neuro-fuzzy exploration targeting models. The results of this study demonstrate that neuro-fuzzy targeting model generated with continuously weighted spatial evidence values is superior to that of the neuro-fuzzy model generated with discretely weighted exploration evidence data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Modified from Alatas et al. (2009)

Figure 3
Figure 4
Figure 5
Figure  6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Abedi, M., & Norouzi, G. H. (2012). Integration of various geophysical data with geological and geochemical data to determine additional drilling for copper exploration. Journal of Applied Geophysics, 83, 35–45.

    Article  Google Scholar 

  • Abedi, M., Norouzi, G. H., & Torabi, S. A. (2013). Clustering of mineral prospectivity area as an unsupervised classification approach to explore copper deposit. Arabian Journal of Geosciences, 6, 3601–3613.

    Article  Google Scholar 

  • Alatas, B., Akin, E., & Ozer, A. B. (2009). Chaos embedded particle swarm optimization algorithms. Chaos, Solitons & Fractals, 40, 1715–1734.

    Article  Google Scholar 

  • Almasi, A., Yousefi, M., & Carranza, E. J. M. (2017). Prospectivity analysis of orogenic gold deposits in Saqez-Sardasht Goldfield, Zagros Orogen, Iran. Ore Geology Reviews, 91, 1066–1080.

    Article  Google Scholar 

  • An, P., Moon, W. M., & Rencz, A. (1991). Application of fuzzy set theory for integration of geological, geophysical and remote sensing data. Journal of Exploration Geophysics, 27, 1–11.

    Google Scholar 

  • Asadi, H. H., Porwal, A., Fatehi, M., Kianpouryan, S., & Lu, Y. J. (2015). Exploration feature selection applied to hybrid data integration modeling: Targeting copper-gold potential in central Iran. Ore Geology Reviews, 71, 819–838.

    Article  Google Scholar 

  • Asadi, H. H., Sansoleimani, A., Fatehi, M., & Carranza, E. J. M. (2016). An AHP–TOPSIS predictive model for district-scale mapping of porphyry Cu–Au potential: A case study from Salafchegan Area (Central Iran). Natural Resources Research, 25, 417–429.

    Article  Google Scholar 

  • Atashpaz Gargari, E., Hashemzadeh, F., Rajabioun, R., & Lucas, C. (2008). Colonial competitive algorithm: A novel approach for PID controller design in MIMO distillation column process. International Journal of Intelligent Computing and Cybernetics, 1, 337–355.

    Article  Google Scholar 

  • Beqiraj, A., Masi, U., & Violo, M. (2000). Geochemical characterization of podiform chromite ores from the ultramafic massif of Bulqiza (Eastern Ophiolitic Belt, Albania) and hints for exploration. Exploration and Mining Geology, 9, 149–156.

    Article  Google Scholar 

  • Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists: Modelling with GIS (Vol. 13). Amsterdam: Elsevier.

    Google Scholar 

  • Brodeur, G., El-Hihi, S., & Jebrak, M. (1992). Applications of neural network computing to mineral exploration in the southern Abitibi greenstone belt. In Program with abstracts-Geological Association of Canada, Mineralogical Association of Canada, Canadian Geophysical Union: Joint annual meeting (Vol. 17, p. 12).

  • Brown, W. M., Gedeon, T. D., Groves, D. I., & Barnes, R. G. (2000). Artificial neural networks: A new method for mineral prospectivity mapping. Australian Journal of Earth Sciences, 47, 757–770.

    Article  Google Scholar 

  • Brownlee, J. (2011). Clever algorithms: Nature-inspired programming recipes.

  • Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS (Vol. 11). Amsterdam: Elsevier.

    Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015a). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of random forests algorithm. Ore Geology Reviews, 71, 777–787.

    Article  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015b). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Computers & Geosciences, 74, 60–70.

    Article  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2016). Data-driven predictive modeling of mineral prospectivity using random forests: A case study in Catanduanes Island (Philippines). Natural Resources Research, 25, 35–50.

    Article  Google Scholar 

  • Chauhan, S., Sharma, M., Arora, M. K., & Gupta, N. K. (2010). Landslide susceptibility zonation through ratings derived from artificial neural network. International Journal of Applied Earth Observation and Geoinformation, 12, 340–350.

    Article  Google Scholar 

  • Chen, Y. (2015). Mineral potential mapping with a restricted Boltzmann machine. Ore Geology Reviews, 71, 749–760.

    Article  Google Scholar 

  • Chen, Y., & Wu, W. (2016). A prospecting cost-benefit strategy for mineral potential mapping based on ROC curve analysis. Ore Geology Reviews, 74, 26–38.

    Article  Google Scholar 

  • Chen, Y., & Wu, W. (2017). Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data. Geochemistry: Exploration, Environment, Analysis, 17, 231–238.

    Google Scholar 

  • Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6, 58–73.

    Article  Google Scholar 

  • Cracknell, M. (2014). Machine learning for geological mapping: Algorithms and applications. Doctoral dissertation, University of Tasmania.

  • Da Silva, I. N., Spatti, D. H., Flauzino, R. A., Liboni, L. H. B., & dos Reis Alves, S. F. (2017). Artificial neural networks. Cham: Springer.

    Book  Google Scholar 

  • Dolan, S. S., Bean, C. J., & Riollet, B. (1998). The broad-band fractal nature of heterogeneity in the upper crust from petrophysical logs. Geophysical Journal International, 132, 489–507.

    Article  Google Scholar 

  • Du, K. L., & Swamy, M. N. (2013). Neural networks and statistical learning. New York: Springer.

    Google Scholar 

  • Eberhart, R. C., & Kennedy, J. (1995). Particle swarm optimization, proceeding of IEEE international conference on neural network, Perth, Australia, 1942–1948.

  • Eberhart, R. C., Shi, Y., & Kennedy, J. (2001). Swarm intelligence. Amsterdam: Elsevier.

    Google Scholar 

  • Fausett, L. (1994). Fundamentals of neural networks: Architectures, algorithms, and applications. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Fernández-Martínez, J. L., García-Gonzalo, E., & Fernández-Alvarez, J. P. (2008). Theoretical analysis of particle swarm trajectories through a mechanical analogy. International Journal of Computational Intelligence Research, 4, 93–104.

    Article  Google Scholar 

  • Gao, Y., Zhang, Z., Xiong, Y., & Zuo, R. (2016). Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China. Ore Geology Reviews, 75, 16–28.

    Article  Google Scholar 

  • Ghazi, A. A., Hassanipak, A. A., & Wallace, K. (1997). Geochemistry, petrology and geology of the Sabzevar ophiolite, Northeastern Iran: Implication on Tethyan tectonics. Geological Society of America, 29, A-229.

    Google Scholar 

  • Goff, J. A., & Holliger, K. (Eds.). (2012). Heterogeneity in the crust and upper mantle: Nature, scaling, and seismic properties. New York: Springer.

    Google Scholar 

  • Harris, J. R., & Sanborn-Barrie, M. (2006). Mineral potential mapping: Examples from the Red Lake greenstone belt, northwest Ontario. GIS for the Earth Sciences, Geological Association of Canada, Special Paper, 44, 1–22.

    Google Scholar 

  • Haykin, S. S. (2009). Neural networks and learning machines (Vol. 3). Upper Saddle River, NJ: Pearson.

    Google Scholar 

  • Hengl, T. (2006). Finding the right pixel size. Computers & Geosciences, 32, 1283–1298.

    Article  Google Scholar 

  • Hoch, K., & Friedrich, G. (1985). Structural features of ophiolitic chromitites in the Zambales Range, Luzon, Philippines. Mineralium Deposita, 20, 290–301.

    Google Scholar 

  • Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks, 4, 251–257.

    Article  Google Scholar 

  • Huang, Z., & Williamson, M. A. (1996). Artificial neural network modelling as an aid to source rock characterization. Marine and Petroleum Geology, 13, 277–290.

    Article  Google Scholar 

  • Jannessary, M. R., Melcher, F., Lodziak, J., & Meisel, T. C. (2012). Review of platinum-group element distribution and mineralogy in chromitite ores from southern Iran. Ore Geology Reviews, 48, 278–305.

    Article  Google Scholar 

  • Kennedy, J. (2007). Review of Engelbrecht’s fundamentals of computational swarm intelligence. Genetic Programming and Evolvable Machines, 8, 107–109.

    Article  Google Scholar 

  • Kreuzer, O. P., Etheridge, M. A., Guj, P., McMahon, M. E., & Holden, D. J. (2008). Linking mineral deposit models to quantitative risk analysis and decision-making in exploration. Economic Geology, 103, 829–850.

    Article  Google Scholar 

  • Kreuzer, O. P., Markwitz, V., Porwal, A. K., & McCuaig, T. C. (2010). A continent-wide study of Australia’s uranium potential: Part I: GIS-assisted manual prospectivity analysis. Ore Geology Reviews, 38, 334–366.

    Article  Google Scholar 

  • Kreuzer, O. P., Miller, A. V., Peters, K. J., Payne, C., Wildman, C., Partington, G. A., et al. (2015). Comparing prospectivity modelling results and past exploration data: A case study of porphyry Cu–Au mineral systems in the Macquarie Arc, Lachlan Fold Belt, New South Wales. Ore Geology Reviews, 71, 516–544.

    Article  Google Scholar 

  • Lary, D. J., Alavi, A. H., Gandomi, A. H., & Walker, A. L. (2016). Machine learning in geosciences and remote sensing. Geoscience Frontiers, 7, 3–10.

    Article  Google Scholar 

  • Leite, E. P., & Souza Filho, C. R. D. (2009). Artificial neural networks applied to mineral potential mapping for copper-gold mineralizations in the Carajás Mineral Province, Brazil. Geophysical Prospecting, 57, 1049–1065.

    Article  Google Scholar 

  • Levander, A. R., & Holliger, K. (1992). Small-scale heterogeneity and large-scale velocity structure of the continental crust. Journal of Geophysical Research: Solid Earth, 97, 8797–8804.

    Article  Google Scholar 

  • Liang, H. T., & Kang, F. H. (2016). Adaptive mutation particle swarm algorithm with dynamic nonlinear changed inertia weight. Optik-International Journal for Light and Electron Optics, 127, 8036–8042.

    Article  Google Scholar 

  • Lisitsin, V. A., González-Álvarez, I., & Porwal, A. (2013). Regional prospectivity analysis for hydrothermal-remobilised nickel mineral systems in western Victoria, Australia. Ore Geology Reviews, 52, 100–112.

    Article  Google Scholar 

  • McBride, J. H. (2004). Heterogeneity in the crust and upper mantle: Nature, scaling, and seismic properties. Eos Transactions American Geophysical Union, 85, 153.

    Article  Google Scholar 

  • McCuaig, T. C., Beresford, S., & Hronsky, J. (2010). Translating the mineral systems approach into an effective exploration targeting system. Ore Geology Reviews, 38, 128–138.

    Article  Google Scholar 

  • Mihalasky, M. J., & Bonham-Carter, G. F. (2001). Lithodiversity and its spatial association with metallic mineral sites, Great Basin of Nevada. Natural Resources Research, 10, 209–226.

    Article  Google Scholar 

  • Mosier, D. L., Singer, D. A., Moring, B. C., & Galloway, J. P. (2012). Podiform chromite depositsdatabase and grade and tonnage models (No. 2012-5157, pp. i-45). US Geological Survey.

  • Müller, B., Reinhardt, J., & Strickland, M. T. (2012). Neural networks: An introduction. New York: Springer.

    Google Scholar 

  • Navidi, A., Ziaii, M., Afzal, P., Yasrebi, A. B., Wetherelt, A., & Foster, P. (2014). Determination of chromites prospects using multifractal models and zonality index in the parang 1: 100000 sheet, Iran. Universal Journal of Geoscience, 2, 133–139.

    Google Scholar 

  • Nykänen, V. (2008). Radial basis functional link nets used as a prospectivity mapping tool for orogenic gold deposits within the Central Lapland Greenstone Belt, Northern Fennoscandian Shield. Natural Resources Research, 17, 29–48.

    Article  Google Scholar 

  • Nykänen, V., Groves, D. I., Ojala, V. J., Eilu, P., & Gardoll, S. J. (2008). Reconnaissance scale conceptual fuzzy-logic prospectivity modeling for iron oxide copper—Gold deposits in the northern Fennoscandian Shield, Finland. Australian Journal of Earth Sciences, 55, 25–38.

    Article  Google Scholar 

  • Nykänen, V., Lahti, I., Niiranen, T., & Korhonen, K. (2015). Receiver operating characteristics (ROC) as validation tool for prospectivity models—A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland. Ore Geology Reviews, 71, 853–860.

    Article  Google Scholar 

  • Nykänen, V., & Salmirinne, H. (2007). Prospectivity analysis of gold using regional geophysical and geochemical data from the Central Lapland Greenstone Belt, Finland. Geological Survey of Finland, 44, 251–269.

    Google Scholar 

  • Oh, H. J., & Lee, S. (2010). Application of artificial neural network for gold–silver deposits potential mapping: A case study of Korea. Natural Resources Research, 19, 103–124.

    Article  Google Scholar 

  • Paktunc, A. D. (1990). Origin of podiform chromite deposits by multistage melting, melt segregation and magmamixing in the upper mantle. Ore Geology Reviews, 5, 211–222.

    Article  Google Scholar 

  • Pan, G., & Harris, D. P. (2000). Information synthesis for mineral exploration. New York: Oxford University Press.

    Google Scholar 

  • Parsa, M., Maghsoudi, A., Yousefi, M., & Sadeghi, M. (2016). Prospectivity modeling of porphyry-Cu deposits by identification and integration of efficient mono-elemental geochemical signatures. Journal of African Earth Sciences, 114, 228–241.

    Article  Google Scholar 

  • Patterson, D. W. (1998). Artificial neural networks: Theory and applications. Prentice Hall PTR.

  • Perez, R. E., & Behdinan, K. (2007). Particle swarm approach for structural design optimization. Computers & Structures, 85, 1579–1588.

    Article  Google Scholar 

  • Poli, R. (2008). Analysis of the publications on the applications of particle swarm optimisation. Journal of Artificial Evolution and Applications. https://doi.org/10.1155/2008/685175.

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2003). Artificial neural networks for mineral-potential mapping: A case study from Aravalli Province, Western India. Natural Resources Research, 12, 155–171.

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2004). A hybrid neuro-fuzzy model for mineral potential mapping. Mathematical Geology, 36, 803–826.

    Article  Google Scholar 

  • Rajabzadeh, M. A., Dehkordi, T. N., & Caran, Ş. (2013). Mineralogy, geochemistry and geotectonic significance of mantle peridotites with high-Cr chromitites in the Neyriz ophiolite from the outer Zagros ophiolite belts, Iran. Journal of African Earth Sciences, 78, 1–15.

    Article  Google Scholar 

  • Rajabzadeh, M. A., Ghasemkhani, E., & Khosravi, A. (2015). Biogeochemical study of chromite bearing zones in Forumad area, Sabzevar ophiolite, Northeastern Iran. Journal of Geochemical Exploration, 151, 41–49.

    Article  Google Scholar 

  • Rajasekaran, S., & Pai, G. V. (2003). Neural networks, fuzzy logic and genetic algorithm: Synthesis and applications (with cd). New Delhi: PHI Learning Pvt. Ltd.

    Google Scholar 

  • Rossi, M., Guzzetti, F., Reichenbach, P., Mondini, A. C., & Peruccacci, S. (2010). Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology, 114, 129–142.

    Article  Google Scholar 

  • Sato, H., Fehler, M. C., & Maeda, T. (2012). Seismic wave propagation and scattering in the heterogeneous earth (Vol. 496). Berlin: Springer.

    Book  Google Scholar 

  • Sen, M. K., & Stoffa, P. L. (2013). Global optimization methods in geophysical inversion. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Shafaii Moghadam, H., Rahgooshay, M., & Forouzesh, V. (2010). Geochemical investigation of the noudular chromites in the Forumad ophiolite, NE of Iran. Iranian Journal of Sciences and Technology, 43, 235–245.

    Google Scholar 

  • Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In IEEE international conference on evolutionary computation (pp. 69–73). Piscataway, NJ: IEEE Press.

  • Shi, Y., & Eberhart, R. C. (1999). Empirical study of particle swarm optimization. In Proceedings of the 1999 congress on evolutionary computation, CEC 99 (Vol. 3, pp. 1945–1950).

  • Shojaat, B. (1999). Application of geochemical models for determining tectonic environment and potential for ore deposits in Sabzevar ophiolite, North Central Iran. Ph.D. dissertation, Azad University, Tehran (in Persian).

  • Shojaat, B., Hassanipak, A. A., Mobasher, K., & Ghazi, A. M. (2003). Petrology, geochemistry and tectonics of the Sabzevar ophiolite, North Central Iran. Journal of Asian Earth Sciences, 21, 1053–1067.

    Article  Google Scholar 

  • Singer, D. A., & Kouda, R. (1996). Application of a feedforward neural network in the search for Kuroko deposits in the Hokuroku district, Japan. Mathematical Geology, 28, 1017–1023.

    Article  Google Scholar 

  • Singh, A., & Biswas, A. (2016). Application of global particle swarm optimization for inversion of residual gravity anomalies over geological bodies with idealized geometries. Natural Resources Research, 25, 297–314.

    Article  Google Scholar 

  • Singh, T. D., Manikyamba, C., Subramanyam, K. S. V., Ganguly, S., Khelen, A. C., & Reddy, N. R. (2018). Mantle heterogeneity, plume-lithosphere interaction at rift controlled ocean-continent transition zone: Evidence from trace-PGE geochemistry of Vempalle flows, Cuddapah Basin, India. Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2017.12.013.

    Article  Google Scholar 

  • Skabar, A. A. (2005). Mapping mineralization probabilities using multilayer perceptrons. Natural Resources Research, 14, 109–123.

    Article  Google Scholar 

  • Skabar, A. (2007a). Mineral potential mapping using Bayesian learning for multilayer perceptrons. Mathematical Geology, 39, 439–451.

    Article  Google Scholar 

  • Skabar, A. (2007b). Modeling the spatial distribution of mineral deposits using neural networks. Natural Resource Modeling, 20, 435–450.

    Article  Google Scholar 

  • Stöcklin, J. (1974). Possible ancient continental margins in Iran. In The geology of continental margins (pp. 873–887). Berlin: Springer.

  • Talbi, E. G. (2009). Metaheuristics: From design to implementation (Vol. 74). Hoboken: Wiley.

    Book  Google Scholar 

  • Tessema, A. (2017). Mineral systems analysis and artificial neural network modeling of chromite prospectivity in the Western Limb of the Bushveld Complex, South Africa. Natural Resources Research, 26, 465–488.

    Article  Google Scholar 

  • Thayer, T. P. (1964). Principal features and origin of podiform chromite deposits, and some observations on the Guleman-Soridag District, Turkey. Economic Geology, 59, 1497–1524.

    Article  Google Scholar 

  • Thompson, M., & Howarth, R. J. (1976). Duplicate analysis in geochemical practice. Part I. Theoretical approach and estimation of analytical reproducibility. Analyst, 101, 690–698.

    Article  Google Scholar 

  • Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4, 65–85.

    Article  Google Scholar 

  • Whittaker, P. J. (1986). Chromite deposits in Ontario (Vol. 55). Greater Sudbury: Ontario Ministry of Northern Development and Mines.

    Google Scholar 

  • Xing, B., & Gao, W. J. (2014). Imperialist competitive algorithm. In Innovative computational intelligence: A rough guide to 134 clever algorithms (pp. 203–209). Cham: Springer.

  • Yaghubpur, A., & Hassannejad, A. A. (2006). The spatial distribution of some chromite deposits in Iran, using fry analysis. Journal of Sciences, 17, 147–152.

    Google Scholar 

  • Yang, X. S. (2010). Engineering optimization: An introduction with metaheuristic applications. Hoboken: Wiley.

    Book  Google Scholar 

  • Yang, W., & Siegel, F. R. (1989). Geochemical exploration for chromite deposits, piedmont upland province, maryland, USA. Journal of Geochemical Exploration, 32, 299–300.

    Article  Google Scholar 

  • Yin, J. N., Xiao, K. Y., Li, N., & Zou, W. (2010). Application of BP neural network in the classification of geo-chemical survey data. Geological Bulletin of China, 29, 1564–1571.

    Google Scholar 

  • Yousefi, M. (2017). Recognition of an enhanced multi-element geochemical signature of porphyry copper deposits for vectoring into mineralized zones and delimiting exploration targets in Jiroft area, SE Iran. Ore Geology Reviews, 83, 200–214.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015a). Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Computers & Geosciences, 74, 97–109.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015b). Prediction-area (P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79, 69–81.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015c). Geometric average of spatial evidence data layers: A GIS-based multi-criteria decision-making approach to mineral prospectivity mapping. Computers & Geosciences, 83, 72–79.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2016). Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25, 3–18.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2017). Union score and fuzzy logic mineral prospectivity mapping using discretized and continuous spatial evidence values. Journal of African Earth Sciences, 128, 47–60.

    Article  Google Scholar 

  • Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2012). Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration, 115, 24–35.

    Article  Google Scholar 

  • Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2014). Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochemistry: Exploration, Environment, Analysis, 14, 45–58.

    Google Scholar 

  • Yousefi, M., & Nykänen, V. (2016). Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping. Journal of Geochemical Exploration, 164, 94–106.

    Article  Google Scholar 

  • Yousefi, M., & Nykänen, V. (2017). Introduction to the special issue: GIS-based mineral potential targeting. Journal of African Earth Sciences, 12, 1–4.

    Article  Google Scholar 

  • Zhao, J., Chen, S., & Zuo, R. (2016). Identifying geochemical anomalies associated with Au–Cu mineralization using multifractal and artificial neural network models in the Ningqiang district, Shaanxi, China. Journal of Geochemical Exploration, 164, 54–64.

    Article  Google Scholar 

  • Zhao, D., Tani, H., & Mishra, O. P. (2004). Crustal heterogeneity in the 2000 western Tottori earthquake region: Effect of fluids from slab dehydration. Physics of the Earth and Planetary Interiors, 145, 161–177.

    Article  Google Scholar 

  • Zheng, Y. L., Ma, L. H., Zhang, L. Y., & Qian, J. X. (2003). On the convergence analysis and parameter selection in particle swarm optimization. International Conference on Machine Learning and Cybernetics, 3, 1802–1807.

    Google Scholar 

  • Zuo, R. (2011). Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China). Journal of Geochemical Exploration, 111, 13–22.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Geological Survey of Iran (GSI) for supplying necessary data to do this research work. We thank Prof. Emmanuel John M. Carranza and three anonymous reviewers for their comments and suggestions, which helped us to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Aghajani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roshanravan, B., Aghajani, H., Yousefi, M. et al. Particle Swarm Optimization Algorithm for Neuro-Fuzzy Prospectivity Analysis Using Continuously Weighted Spatial Exploration Data. Nat Resour Res 28, 309–325 (2019). https://doi.org/10.1007/s11053-018-9385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-018-9385-4

Keywords

Navigation