Skip to main content
Log in

Enhancement and Mapping of Weak Multivariate Stream Sediment Geochemical Anomalies in Ahar Area, NW Iran

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

In this study, stream sediment geochemical data have been subjected to robust principal components analysis (RPCA) and singularity mapping (SM) to enhance and map significant multivariate geochemical anomalies (i.e., mineralization-related) in Ahar area, NW Iran. The RPCA was applied to (a) account for the compositional nature of stream sediment geochemical data using suitable log-ratio transformation, (b) modulate the effect of outliers in component estimation and (c) derive a multivariate geochemical footprint of mineralization. The SM was applied to extract anomalous patterns of the multivariate geochemical footprint of mineralization. The exploration targets were then delineated using Student’s t-statistics analysis. The correlations of mapped exploration targets with the known mineral occurrences and mineralization-related patterns were further evaluated using normalized density index and overall accuracy analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Afzal, P., Ahari, H. D., Omran, N. R., & Aliyari, F. (2013a). Delineation of gold mineralized zones using concentration–volume fractal model in Qolqoleh gold deposit, NW Iran. Ore Geology Reviews, 55, 125–133.

    Article  Google Scholar 

  • Afzal, P., Fadakar Alghandis, Y., Khakzad, A., Moarefvand, P., & Rashidnejad Omran, N. (2011). Delineation of mineralization zones in porphyry Cu deposits by fractal concentration-volume modelling. Journal of Geochemical Exploration, 18, 220–232.

    Article  Google Scholar 

  • Afzal, P., Harati, H., Fadakar Alghandis, Y., & Yasrebi, A. B. (2013b). Application of spectrum–area fractal model to identify of geochemical anomalies based on soil data in Kahang porphyry-type Cu deposit, Iran. Chemie der Erde-Geochemistry, 73, 533–543.

    Article  Google Scholar 

  • Afzal, P., Khakzad, A., Moarefvand, P., Rashidnejad Omran, N., Esfandiari, B., & Fadakar Alghalandis, Y. (2010). Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran. Journal of Geochemical Exploration, 104, 34–46.

    Article  Google Scholar 

  • Agterberg, F. P. (1994). Fractals, multifractals and change of support. In R. Dimitrakopoulos (Ed.), Geostatistics for the next century (pp. 223–234). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Agterberg, F. P. (1996). Multifractal modeling of the sizes and grades of giant and supergiant deposits. International Geology Review, 37, 1–8.

    Article  Google Scholar 

  • Agterberg, F. P. (2012). Multifractals and geostatistics. Journal of Geochemical Exploration, 122, 13–122.

    Article  Google Scholar 

  • Agterberg, F. P., & Bonham-Carter, G. F. (2005). Measuring the performance of mineral-potential maps. Natural Resource Researches, 14, 1–17.

    Article  Google Scholar 

  • Aitchison, J. (1986). The statistical analysis of compositional data (p. 416). London: Chapman and Hall.

    Book  Google Scholar 

  • Aitchison, J., & Greenacre, M. (2002). Biplots of compositional data. Applied Statistics, 51, 375–392.

    Google Scholar 

  • Alavi, M. (1994). Tectonics of Zagros Orogenic belt of Iran, new data and interpretation. Tectonophysics, 229, 211–238.

    Article  Google Scholar 

  • Asadi, H. H., Sansoleimani, A., Fatehi, M., & Carranza, E. J. M. (2016). An AHP–TOPSIS predictive model for district-scale mapping of porphyry Cu–Au potential: a case study from Salafchegan Area (Central Iran). Natural Resources Research, 25, 417–429.

    Article  Google Scholar 

  • Bonham-Carter, G. (1994). Geographic information systems for geoscientists: Modeling with GIS. Oxford: Elsevier.

    Google Scholar 

  • Buccianti, A., & Grunsky, E. (2014). Compositional data analysis in Geochemistry: Are we sure to see what really occurs during natural processes? Journal of Geochemical Exploration, 141, 1–5.

    Article  Google Scholar 

  • Buccianti, A., Lima, A., Albanese, S., Cannatelli, C., Esposito, R., & De Vivo, B. (2015). Exploring topsoil geochemistry from the CoDA (Compositional Data Analysis) perspective: The multi-element data archive of the Campania Region (Southern Italy). Journal of Geochemical Exploration, 159, 302–316.

    Article  Google Scholar 

  • Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of exploration and environmental geochemistry (Vol. 11). Amsterdam: Elsevier.

    Google Scholar 

  • Carranza, E. J. M. (2009a). Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes. Geochemistry: Exploration, Environment, Analysis, 10, 171–187.

    Google Scholar 

  • Carranza, E. J. M. (2009b). Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity. Computers & Geosciences, 35, 2032–2046.

    Article  Google Scholar 

  • Carranza, E. J. M. (2010). Catchment basin modeling of stream sediment anomalies revisited: incorporation of EDA and fractal analysis. Geochemistry: Exploration, Environment, Analysis, 10, 365–381.

    Google Scholar 

  • Carranza, E. J. M. (2011). Analysis and mapping of geochemical anomalies using log-ratio transformed stream sediment data with concord values. Journal of Geochemical Exploration, 110, 167–185.

    Article  Google Scholar 

  • Carranza, E. J. M. (2015). Data-driven evidential belief modeling of mineral potential using few prospects and evidence with missing values. Natural Resources Research, 24, 291–304.

    Article  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015a). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: application of Random Forests algorithm. Ore Geology Reviews, 71, 777–787.

    Article  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015b). Random forest predictivity modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philipines). Computers & Geosciences, 74, 60–70.

    Article  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2016). Data-driven predictive modeling of mineral prospectivity using random forests: a case study in Catanduanes Island (Philippines). Natural Resources Research, 25, 35–50.

    Article  Google Scholar 

  • Chen, G., Cheng, Q., Liu, T., & Yang, Y. (2013). Mapping local singularities using magnetic data to investigate the volcanic rocks of the Qikou depression, Dagang oilfield, eastern China. Nonlinear processes in geophysics, 20, 501–511.

    Article  Google Scholar 

  • Cheng, Q. (2006). GIS based fractal/multifractal anomaly analysis for modeling and prediction of mineralization and mineral deposits. In J. R. Harris (Ed.), GIS for the Earth Sciences (pp. 285–296). St. John’s, Newfoundland: Geological Association of Canada.

    Google Scholar 

  • Cheng, Q. (2007). Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 321, 314–324.

    Article  Google Scholar 

  • Cheng, Q., & Agterberg, F. P. (2009). Singularity analysis of ore-mineral and toxic trace elements in stream sediments. Computers & Geosciences, 35, 234–244.

    Article  Google Scholar 

  • Cheng, Q., Agterberg, F. P., & Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 54, 109–130.

    Article  Google Scholar 

  • Cheng, Q., Xia, Q., Li, W., Zhang, S., Chen, Z., Zuo, R., et al. (2010). Density/area power-law models for separating multi-scale anomalies of ore and toxic elements in stream sediments in Gejiu mineral district, Yunnan Province, China. Bio Geosciences, 7, 3019–3025.

    Google Scholar 

  • Cheng, Q., Xu, Y., & Grunsky, E. (1999). Integrated spatial and spectral analysis for geochemical anomaly separation. In S. J. Lippard, A. Naess, R. Sinding-Larsen (Eds.), Proceedings of the fifth annual conference of the international association for mathematical geology, Trondheim, Norway 6–11th August, Vol. 11, pp. 87–92.

  • Cheng, Q., Xu, Y., & Grunsky, E. (2000). Integrated spatial and spectrum method for geochemical anomaly separation. Natural Resources Research, 9, 43–52.

    Article  Google Scholar 

  • Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & Barceló-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35, 279–300.

    Article  Google Scholar 

  • Elston, R. E. (1961). On additivity in the analysis of variance. Biometrics, 17, 209–219.

    Article  Google Scholar 

  • Filzmoser, P., & Hron, K. (2008). Outlier detection for compositional data using robust methods. Mathematical Geosciences, 40, 233–248.

    Article  Google Scholar 

  • Filzmoser, P., Hron, K., & Reimann, C. (2009a). Principal component analysis for compositional data with outliers. Environmetrics, 20, 621–632.

    Article  Google Scholar 

  • Filzmoser, P., Hron, K., & Reimann, C. (2010). The bivariate statistical analysis of environmental (compositional) data. Science of the Total Environment, 408, 4230–4238.

    Article  Google Scholar 

  • Filzmoser, P., Hron, K., Reimann, C., & Garrett, R. (2009b). Robust factor analysis for compositional data. Computers & Geosciences, 35, 1854–1861.

    Article  Google Scholar 

  • Ghorbani, M. (2013). The economic geology of Iran: Mineral deposits and natural resources. Berlin: Springer.

    Book  Google Scholar 

  • Grunsky, E. C. (2010). The interpretation of geochemical survey data. Geochemistry: Exploration, Environment, Analysis, 10, 27–74.

    Google Scholar 

  • Halsey, T. C., Jensen, M. H., Kadano, L. P., Procaccia, I., & Shraiman, B. I. (1986). Fractal measures and their singularities: The characterization of strange sets. Physical Review A, 33, 1141–1151.

    Article  Google Scholar 

  • Hengl, T. (2006). Finding the right pixel size. Computers & Geosciences, 32, 1283–1298.

    Article  Google Scholar 

  • Hoyle, H. M. (1973). Transformation—an introduction and a bibliography. International Statistical Reviews, 41, 203–223.

    Article  Google Scholar 

  • Jamali, H., & Mehrabi, B. (2015). Relationships between Arc maturity and Cu-Mo-Au porphyry and related Epithermal mineralization at the Cenozoic Arasbaran magmatic belt. Ore Geology Reviews, 65, 487–501.

    Article  Google Scholar 

  • Luz, F., Mateus, A., Matos, J. X., & Gonçalves, M. A. (2014). Cu- and Zn-soil anomalies in the NE Border of the South Portuguese Zone (Iberian Variscides, Portugal) identified by multifractal and geostatistical analyses. Natural Resources Research, 23, 195–215.

    Article  Google Scholar 

  • Maghsoudi, A., Yazdi, M., Mehrpartou, M., Vosoughi, M., & Younesi, S. (2014). Porphyry Cu–Au mineralization in the Mirkuh Ali Mirza magmatic complex, NW Iran. Journal of Asian Earth Sciences, 79, 932–941.

    Article  Google Scholar 

  • Mahdavi, M. A., & Amini Fazl, A. (1988). Geological map of Iran 1: 100,000 series, Ahar. Tehran: Geological Survey of Iran.

    Google Scholar 

  • Mandelbrot, B. B. (1983). The fractal geometry of nature (updated and augmented edition) (p. 495). New York: Freeman.

    Google Scholar 

  • Mihalasky, M. J., & Bonham-Carter, G. F. (2001). Lithodiversity and its spatial association with metallic mineral sites, Great Basin of Nevada. Natural Resources Research, 10, 209–226.

    Article  Google Scholar 

  • Parsa, M., Maghsoudi, A., & Ghezelbash, R. (2016a). Decomposition of anomaly patterns of multi-element geochemical signatures in Ahar area, NW Iran: A comparison of U-spatial statistics and fractal models. Arabian Journal of Geosciences, 9, 1–16.

    Article  Google Scholar 

  • Parsa, M., Maghsoudi, A., & Yousefi, M. (2017a). An improved data-driven fuzzy mineral prospectivity mapping procedure; cosine amplitude-based similarity approach to delineate exploration targets. International Journal of Applied Earth Observation and Geoinformation, 58, 157–167.

    Article  Google Scholar 

  • Parsa, M., Maghsoudi, A., Yousefi, M., & Carranza, E. J. M. (2017b). Multifractal interpolation and spectrum–area fractal modeling of stream sediment geochemical data: Implications for mapping exploration targets. Journal of African Earth Sciences, 128, 5–15.

    Article  Google Scholar 

  • Parsa, M., Maghsoudi, A., Yousefi, M., & Sadeghi, M. (2016b). Prospectivity modeling of porphyry-Cu deposits by identification and integration of efficient mono-elemental geochemical signatures. Journal of African Earth Sciences, 114, 228–241.

    Article  Google Scholar 

  • Parsa, M., Maghsoudi, A., Yousefi, M., & Sadeghi, M. (2016c). Recognition of significant multi-element geochemical signatures of porphyry Cu deposits in Noghdouz area, NW Iran. Journal of Geochemical Exploration, 165, 111–124.

    Article  Google Scholar 

  • Parsa, M., Maghsoudi, A., Yousefi, M., & Sadeghi, M. (2016d). Multifractal analysis of stream sediment geochemical data: Implications for hydrothermal nickel prospection in an arid terrain, eastern Iran. Journal of Geochemical Exploration. doi:10.1016/j.gexplo.2016.11.013.

    Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2003). Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping. Natural Resources Research, 12, 1–25.

    Article  Google Scholar 

  • Qu, X. M., Hou, Z. Q., Zaw, K., & Li, Y. G. (2007). Characteristics and genesis of Gangdese porphyry copper deposits in the southern Tibetan Plateau: preliminary geochemical and geochronological results. Ore Geology Reviews, 31, 205–223.

    Article  Google Scholar 

  • Reimann, C., & Filzmoser, P. (2000). Normal and lognormal data distribution in geochemistry: Death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environmental Geology, 39, 1001–1014.

    Article  Google Scholar 

  • Reimann, C., Filzmoser, P., Garrett, R. G., & Dutter, R. (2008). Statistical data analysis explained. Applied environmental statistics with R. Chichester: Wiley.

    Book  Google Scholar 

  • Rousseeuw, P. J., & Driessen, K. V. (1999). A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41, 212–223.

    Article  Google Scholar 

  • Sadr, M. P., Hassani, H., & Maghsoudi, A. (2014a). Slope instability assessment using a weighted overlay mapping method, a case study of Khorramabad-Doroud railway track, W Iran. Journal of Tethys, 2, 254–271.

    Google Scholar 

  • Sadr, M. P., Maghsoudi, A., & Saljoughi, B. S. (2014b). Landslide susceptibility mapping of Komroud sub-basin using fuzzy logic approach. Geodynamics Research International Bulletin, 2, 16–28.

    Google Scholar 

  • Schwertman, N. C., Owens, M. A., & Adnan, R. (2004). A simple more general boxplot method for identifying outliers. Computational Statistics & Data Analysis, 47(165–17), 4.

    Google Scholar 

  • Shannon, C. E. (1949). Communication in the presence of noise. Proceedings of the Institute of Radio Engineers, 37, 10–21.

    Google Scholar 

  • Shuguang, Z., Kefa, Z., Yao, C., Jinlin, W., & Jianli, D. (2015). Exploratory data analysis and singularity mapping in geochemical anomaly identification in Karamay, Xinjiang, China. Journal of Geochemical Exploration, 154, 171–179.

    Article  Google Scholar 

  • Sillitoe, R. H. (2010). Porphyry copper systems. Economic Geology, 105, 3–41.

    Article  Google Scholar 

  • Sinclair, A. J. (1974). Selection of threshold values in geochemical data using probability graphs. Journal of Geochemical Exploration, 3, 129–149.

    Article  Google Scholar 

  • Sinclair, A. J. (1976). Applications of probability graphs in mineral exploration (Vol. 4). Oviedo: Associations of Exploration Geochemists.

    Google Scholar 

  • Stanley, C. R. (2006). Numerical transformation of geochemical data: 1. Maximizing geochemical contrast to facilitate information extraction and improve data presentation. Geochemistry: Exploration, Environment, Analysis, 6, 69–78.

    Google Scholar 

  • Stanley, C. R., & Sinclair, A. J. (1989). Comparison of probability plots and gap statistics in the se le ct ion of threshold for exploration geochemistry data. Journal of Geochemical Exploration, 32, 355–357.

    Article  Google Scholar 

  • Sun, X., Gong, Q., Wang, Q., Yang, L., Wang, C., & Wang, Z. (2010). Application of local singularity model to delineate geochemical anomalies in Xiong’ershan gold and molybdenum ore district, Western Henan province, China. Journal of Geochemical Exploration, 107, 21–29.

    Article  Google Scholar 

  • Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285–1293.

    Article  Google Scholar 

  • Templ, M., Hron, K., & Filzmoser, P. (2011). robCompositions: an R-package for robust statistical analysis of compositional data. In V. Pawlowsky-Glahn & A. Buccianti (Eds.), Compositional data analysis: Theory and applications (pp. 341–355). Chichester: Wiley.

    Chapter  Google Scholar 

  • Tukey, J. W. (1977). Exploratory data analysis. Reading: Addison-Wesley.

    Google Scholar 

  • Wang, W., Zhao, J., & Cheng, Q. (2011). Analysis and integration of geo-information to identify granitic intrusions as exploration targets in southeastern Yunnan district, China. Computers & Geosciences, 37, 1946–1957.

    Article  Google Scholar 

  • Wang, W., Zhao, J., & Cheng, Q. (2013a). Application of singularity index mapping technique to gravity/magnetic data analysis in southeastern Yunnan mineral district, China. Journal of Applied Geophysics, 92, 39–49.

    Article  Google Scholar 

  • Wang, W., Zhao, J., & Cheng, Q. (2013b). Fault trace-oriented singularity mapping technique to characterize anisotropic geochemical signatures in Gejiu mineral district. Journal of Geochemical Exploration, 134, 27–37.

    Article  Google Scholar 

  • Wang, W., Zhao, J., & Cheng, Q. (2014). Mapping of Fe mineralization-associated geochemical signatures using logratio transformed stream sediment geochemical data in eastern Tianshan, China. Journal of Geochemical Exploration, 141, 6–14.

    Article  Google Scholar 

  • Wang, W., Zhao, J., Cheng, Q., & Liu, J. (2012). Tectonic–geochemical exploration modeling for characterizing geo-anomalies in southeastern Yunnan district, China. Journal of Geochemical Exploration, 122, 71–80.

    Article  Google Scholar 

  • Wang, H., & Zuo, R. (2015). A comparative study of trend surface analysis and spectrum–area multifractal model to identify geochemical anomalies. Journal of Geochemical Exploration, 155, 84–90.

    Article  Google Scholar 

  • Xiao, F., Chen, J., Agterberg, F., & Wang, C. (2014). Element behavior analysis and its implications for geochemical anomaly identification: A case study for porphyry Cu–Mo deposits in Eastern Tianshan, China. Journal of Geochemical Exploration, 145, 1–11.

    Article  Google Scholar 

  • Xiao, F., Chen, J., Zhang, Z., Wang, C., Wu, G., & Agterberg, F. P. (2012). Singularity mapping and spatially weighted principal component analysis to identify geochemical anomalies associated with Ag and Pb-Zn polymetallic mineralization in Northwest Zhejiang, China. Journal of Geochemical Exploration, 122, 90–100.

    Article  Google Scholar 

  • Yang, Z., Hou, Z., White, N. C., Chang, Z., Li, Z., & Song, Y. (2009). Geology of the postcollisional porphyry copper–molybdenum deposit at Qulong, Tibet. Ore Geology Reviews, 36, 133–159.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015a). Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Computers & Geosciences, 74, 97–109.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015b). Prediction–area (P–A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79, 69–81.

    Article  Google Scholar 

  • Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2012). Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration, 115, 24–35.

    Article  Google Scholar 

  • Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2014). Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochemistry: Exploration, Environmental, Analysis, 14, 45–58.

    Google Scholar 

  • Yuan, F., Li, X., Zhou, T., Deng, Y., Zhang, D., Xu, C., et al. (2015). Multifractal modelling-based mapping and identification of geochemical anomalies associated with Cu and Au mineralisation in the NW Junggar area of northern Xinjiang Province, China. Journal of Geochemical Exploration, 154, 252–264.

    Article  Google Scholar 

  • Zarasvandi, A., Rezaei, M., Sadeghi, M., Lentz, D., Adelpour, M., & Pourkaseb, H. (2015). Rare earth element signatures of economic and sub-economic porphyry copper systems in Urumieh–Dokhtar Magmatic Arc (UDMA), Iran. Ore Geology Reviews, 70, 407–423.

    Article  Google Scholar 

  • Zhao, J., Chen, S., Zuo, R., & Carranza, E. J. M. (2011). Mapping complexity of spatial distribution of faults using fractal and multifractal models: Vectoring towards exploration targets. Computers and Geosciences, 37, 1958–1966.

    Article  Google Scholar 

  • Zhao, J., Wang, W., Cheng, Q., & Agterberg, F. (2016). Mapping of Fe mineral potential by spatially weighted principal component analysis in the eastern Tianshan mineral district, China. Journal of Geochemical Exploration, 164, 107–121.

    Article  Google Scholar 

  • Zuo, R. (2011). Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China). Journal of Geochemical Exploration, 111, 13–22.

    Article  Google Scholar 

  • Zuo, R. (2012). Exploring the effects of cell size in geochemical mapping. Journal of Geochemical Exploration, 112, 357–367.

    Article  Google Scholar 

  • Zuo, R. (2014). Identification of geochemical anomalies associated with mineralization in the Fanshan district, Fujian, China. Journal of Geochemical Exploration, 139, 170–176.

    Article  Google Scholar 

  • Zuo, R., Cheng, Q., Xia, Q., & Agterberg, F. P. (2009). Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China. Journal of Geochemical Exploration, 101, 225–235.

    Article  Google Scholar 

  • Zuo, R., & Wang, J. (2016). Fractal/multifractal modeling of geochemical data: A review. Journal of Geochemical Exploration, 164, 33–41.

    Article  Google Scholar 

  • Zuo, R., Wang, J., Chen, G., & Yang, M. (2015a). Reprint of “Identification of weak anomalies: A multifractal perspective”. Journal of Geochemical Exploration, 154, 200–212.

    Article  Google Scholar 

  • Zuo, R., Xia, Q., & Wang, H. (2013). Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization. Journal of Geochemical Exploration, 28, 202–211.

    Google Scholar 

  • Zuo, R., Zhang, Z., Zhang, D., Carranza, E. J. M., & Wang, H. (2015b). Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: A case study with skarn-type Fe deposits in Southwestern Fujian Province, China. Ore Geology Reviews, 71, 502–515.

    Article  Google Scholar 

Download references

Acknowledgments

We are appreciative of the constructive comments of Prof. Renguang Zuo, the associate editor, and Prof. Antonella Buccianti and an anonymous reviewer, which significantly helped us improve the presentation of material in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Maghsoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parsa, M., Maghsoudi, A., Carranza, E.J.M. et al. Enhancement and Mapping of Weak Multivariate Stream Sediment Geochemical Anomalies in Ahar Area, NW Iran. Nat Resour Res 26, 443–455 (2017). https://doi.org/10.1007/s11053-017-9346-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-017-9346-3

Keywords

Navigation