Skip to main content
Log in

Mechanical properties of diamane kirigami under tensile deformation

  • Original research
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Kirigami, as an ancient Japanese paper-cutting and origami art, has been widely used in the study of tensile properties of 2D nanomaterials. Diamane—a 2D nanodiamond film—has excellent electrical, thermal, and mechanical properties, while its ductility is poor, so this paper focuses on the enhancement of the tensile properties of Diamane by Kirigami. In this study, the tensile mechanical properties and deformation mechanisms of Diamane Kirigami were simulated and analyzed using molecular dynamics by varying three geometrical parameters, namely, the degree of overlap, the cutting rate, and the aspect ratio of the Kirigami cuts. The results show that the fracture strain (200–250%) of Diamane Kirigami can be 7–8 times higher than that of pristine Diamane (zigzag: 26.1%, armchair: 17.6%). For Diamane Kirigami in the armchair chiral configuration, more stable mechanical properties and ductility can be obtained in all parameters of the design. The I-shaped cutout shape and the stretching in the armchair direction can help Diamane Kirigami to significantly reduce the stress concentration at the ends of the cut and to increase the fracture strain. In conclusion, it is found in this paper that Diamane Kirigami possesses higher fracture strain compared to pristine Diamane, which will potentially expand their applications in engineering nanodevices and nanoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sofo JO et al (2007) Graphane: a two-dimensional hydrocarbon. Phys Rev B. https://doi.org/10.1103/PhysRevB.75.153401

  2. Chernozatonskii LA, Sorokin PB, Kvashnin AG et al (2009) Diamond-like C2H nanolayer, diamane: simulation of the structure and properties. JETP Lett 90(2):134–138. https://doi.org/10.1134/s0021364009140112

    Article  CAS  Google Scholar 

  3. Martins LGP, Silva DL, Smith JS et al (2019) Evidence for a pressure-induced phase transition of few-layer graphene to 2D diamond. arXiv preprint arXiv:1910.01591. https://doi.org/10.48550/arXiv.1910.01591

  4. Ke F, Zhang L, Chen Y et al (2019) Synthesis and electronic structure characterization of diamane. arXiv preprint arXiv:1902.01570. https://doi.org/10.48550/arXiv.1902.01570

  5. Sorokin PB, Yakobson BI (2021) Two-dimensional diamond-diamane: current state and further prospects. Nano Lett 21(13):5475–5484. https://doi.org/10.1021/acs.nanolett.1c01557

    Article  CAS  PubMed  Google Scholar 

  6. Bakharev PV, Huang M, Saxena M et al (2020) Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond. Nat Nanotechnol 15(1):59–66. https://doi.org/10.1038/s41565-019-0582-z

    Article  CAS  PubMed  Google Scholar 

  7. Piazza F, Gough K, Monthioux M et al (2019) Low temperature, pressureless sp2 to sp3 transformation of ultrathin, crystalline carbon films. Carbon 145:10–22. https://doi.org/10.1016/j.carbon.2019.01.017

    Article  CAS  Google Scholar 

  8. Zhu L, Li W, Ding F (2019) Giant thermal conductivity in diamane and the influence of horizontal reflection symmetry on phonon scattering. Nanoscale 11(10):4248–4257. https://doi.org/10.1039/c8nr08493a

    Article  CAS  PubMed  Google Scholar 

  9. Wu Y-C, Shao J-L, Zheng Z et al (2020) Mechanical properties of a single-layer diamane under tension and bending. J Phys Chem C 125(1):915–922. https://doi.org/10.1021/acs.jpcc.0c08172

    Article  CAS  Google Scholar 

  10. Muniz AR, Machado AS, Maroudas D (2015) Mechanical behavior of interlayer-bonded nanostructures obtained from bilayer graphene. Carbon 81:663–677. https://doi.org/10.1016/j.carbon.2014.10.003

    Article  CAS  Google Scholar 

  11. Niraula PR, Cao T, Bongiorno A (2020) Mechanical properties of sp3-bonded carbon and boron nitride 2D membranes: a first principles study. Comput Mater Sci 179:109635. https://doi.org/10.1016/j.commatsci.2020.109635

    Article  CAS  Google Scholar 

  12. Samarakoon DK, Wang XQ (2010) Tunable band gap in hydrogenated bilayer graphene. ACS Nano 4(7):4126–4130. https://doi.org/10.1021/nn1007868

    Article  CAS  PubMed  Google Scholar 

  13. Mortazavi B, Shojaei F, Javvaji B et al (2020) First-principles investigation of mechanical, electronic and optical properties of H-, F- and Cl-diamane. Appl Surf Sci 528:147035. https://doi.org/10.1016/j.apsusc.2020.147035

    Article  CAS  Google Scholar 

  14. Si C, Sun Z, Liu F (2016) Strain engineering of graphene: a review. Nanoscale 8(6):3207–3217. https://doi.org/10.1039/c5nr07755a

    Article  CAS  PubMed  Google Scholar 

  15. Qi Z, Campbell DK, Park HS (2014) Atomistic simulations of tension-induced large deformation and stretchability in graphene kirigami. Phys Rev B 90(24):245437. https://doi.org/10.1103/PhysRevB.90.245437

    Article  CAS  Google Scholar 

  16. Kumar S, Mishra T, Mahata A (2020) Manipulation of mechanical properties of monolayer molybdenum disulfide: kirigami and hetero-structure based approach. Mater Chem Phys 252:123280. https://doi.org/10.1016/j.matchemphys.2020.123280

    Article  CAS  Google Scholar 

  17. Han T, Scarpa F, Allan NL (2017) Super stretchable hexagonal boron nitride kirigami. Thin Solid Films 632:35–43. https://doi.org/10.1016/j.tsf.2017.03.059

    Article  CAS  Google Scholar 

  18. Cai J, Estakhrianhaghighi E, Akbarzadeh A (2022) Functionalized graphene origami metamaterials with tunable thermal conductivity. Carbon 191:610–624. https://doi.org/10.1016/j.carbon.2022.02.008

    Article  CAS  Google Scholar 

  19. Tang Y, Yin J (2017) Design of cut unit geometry in hierarchical kirigami-based auxetic metamaterials for high stretchability and compressibility. Extreme Mech Lett 12:77–85. https://doi.org/10.1016/j.eml.2016.07.005

    Article  Google Scholar 

  20. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  21. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng 18(1):015012. https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  22. Zhao D, Wang J, Hao P et al (2021) A molecular dynamics simulation on the atomic mass sensor made of monolayer diamond. Nanotechnology. https://doi.org/10.1088/1361-6528/ac1d0a

  23. Zhang Z, Cai K, Wang L (2023) Configuration defects-induced energy loss of a self-shrinking nanonetwork under cyclic biaxial stretching-shrinking. Comput Mater Sci 227:112280. https://doi.org/10.1016/j.commatsci.2023.112280

    Article  CAS  Google Scholar 

  24. Cai K, Zhang Z, Wang L (2022) Energy evolution mechanism of nanonetwork from hydrogenated graphene scrolls. Mater Today Commun 33:104957. https://doi.org/10.1016/j.mtcomm.2022.104957

    Article  CAS  Google Scholar 

  25. Blees MK, Barnard AW, Rose PA et al (2015) Graphene kirigami. Nature 524(7564):204–207. https://doi.org/10.1038/nature14588

    Article  CAS  PubMed  Google Scholar 

  26. Barboza AM, Aliaga LC, Faria D et al (2022) Bilayer graphene kirigami. Carbon Trends 9:100227. https://doi.org/10.1016/j.cartre.2022.100227

    Article  CAS  Google Scholar 

  27. Cai J, Akbarzadeh A (2021) Hierarchical kirigami-inspired graphene and carbon nanotube metamaterials: tunability of thermo-mechanic properties. Mater Des 206:109811. https://doi.org/10.1016/j.matdes.2021.109811

    Article  CAS  Google Scholar 

  28. Zheng Z, Zhan H, Nie Y et al (2020) Single layer diamond-a new ultrathin 2D carbon nanostructure for mechanical resonator. Carbon 161:809–815. https://doi.org/10.1016/j.carbon.2020.02.017

    Article  CAS  Google Scholar 

  29. Zheng B, Gu GX (2019) Tuning the graphene mechanical anisotropy via defect engineering. Carbon 155:697–705. https://doi.org/10.1016/j.carbon.2019.09.008

    Article  CAS  Google Scholar 

  30. Cheng T, Liu Z, Liu Z (2020) High elastic moduli, controllable bandgap and extraordinary carrier mobility in single-layer diamond. J Mater Chem C 8(39):13819–13826. https://doi.org/10.1039/d0tc03253k

    Article  CAS  Google Scholar 

  31. Bacon R (1960) Growth, structure, and properties of graphite whiskers. J Appl Phys 31(2):283–290. https://doi.org/10.1063/1.1735559

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengcheng Zhu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Wang, S., Zhang, X. et al. Mechanical properties of diamane kirigami under tensile deformation. J Nanopart Res 26, 91 (2024). https://doi.org/10.1007/s11051-024-06004-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-06004-4

Keywords

Navigation