Skip to main content
Log in

Mechanics of 2D Materials-Based Cellular Kirigami Structures: A Computational Study

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

We develop a generic coarse-grained potential for a general group of 2D materials to study the mechanical performance of 2D materials-based cellular kirigami structures for understanding of the relation between the mechanical properties and structure pattern as well as the material component. By patterning the structure lattice cell, the mechanical properties of 2D materials-based structures show a very wide range from almost zero to those of the pristine 2D materials by orders of magnitude. Moreover, results indicate that there are two distinct stress–strain stages associated with density, J-shape non-linear and linear elasticity. Results also indicate that hole-in structures show better ductility performance than no-hole structures. In addition, the material effect on mechanical performance of 2D materials-based cellular kirigami is significant, exemplified by the graphene-based structure outperforming those made of other 2D materials. Overall, this study provides a computational basis for designing future kirigami structures with outstanding properties and functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Yang, Q. Liu, Z. Gao, Z. Yue, and B. Xu, Proc. Natl. Acad. Sci. 115, E7245 (2018).

    Article  Google Scholar 

  2. R.M. Neville, F. Scarpa, and A. Pirrera, Sci. Rep. 6, 31067 (2016).

    Article  Google Scholar 

  3. J.A. Fan, W.-H. Yeo, Y. Su, Y. Hattori, W. Lee, S.-Y. Jung, Y. Zhang, Z. Liu, H. Cheng, L. Falgout, M. Bajema, T. Coleman, D. Gregoire, R.J. Larsen, Y. Huang, and J.A. Rogers, Nat. Commun. 5, 3266 (2014).

    Article  Google Scholar 

  4. A. Miyamoto, S. Lee, N.F. Cooray, S. Lee, M. Mori, N. Matsuhisa, H. Jin, L. Yoda, T. Yokota, A. Itoh, M. Sekino, H. Kawasaki, T. Ebihara, M. Amagai, and T. Someya, Nat. Nanotechnol. 12, 907 (2017).

    Article  Google Scholar 

  5. S. Xu, Y. Zhang, J. Cho, J. Lee, X. Huang, L. Jia, J.A. Fan, Y. Su, J. Su, H. Zhang, H. Cheng, B. Lu, C. Yu, C. Chuang, T.I. Kim, T. Song, K. Shigeta, S. Kang, C. Dagdeviren, I. Petrov, P.V. Braun, Y. Huang, U. Paik, and J.A. Rogers, Nat. Commun. 4, 1543 (2013).

    Article  Google Scholar 

  6. D. Mousanezhad, S. Babaee, R. Ghosh, E. Mahdi, K. Bertoldi, and A. Vaziri, Phys. Rev. B. 92, 104304 (2015).

    Article  Google Scholar 

  7. Y. Chen, T. Li, F. Scarpa, and L. Wang, Phys. Rev. Appl. 7, 024012 (2017).

    Article  Google Scholar 

  8. P.Z. Hanakata, E.D. Cubuk, D.K. Campbell, and H.S. Park, Phys. Rev. Lett. 121, 255304 (2018).

    Article  Google Scholar 

  9. Z. Qi, D.K. Campbell, and H.S. Park, Phys. Rev. B. 90, 245437 (2014).

    Article  Google Scholar 

  10. M. Gamil, Q.X. Pei, and Y.Y. Zhang, Comput. Mater. Sci. 173, 109462 (2020).

    Article  Google Scholar 

  11. Z. Liu, H. Du, J. Li, L. Lu, Z.-Y. Li, and N.X. Fang, Sci. Adv. 4, eaat4436 (2018).

    Article  Google Scholar 

  12. L. Ruiz, W. Xia, Z. Meng, and S. Keten, Carbon 82, 103 (2015).

    Article  Google Scholar 

  13. B. Arash, H.S. Park, and T. Rabczuk, Compos. Struct. 134, 981 (2015).

    Article  Google Scholar 

  14. M. Li, Y.-Z. Gu, H. Liu, Y.-X. Li, S.-K. Wang, Q. Wu, and Z.-G. Zhang, Composit. Sci. Technol. 86, 117 (2013).

    Article  Google Scholar 

  15. Z. Meng, R.A. Soler-Crespo, W. Xia, W. Gao, L. Ruiz, H.D. Espinosa, and S. Keten, Carbon 117, 476 (2017).

    Article  Google Scholar 

  16. R.E. Rudd and J.Q. Broughton, Phys. Rev. B. 58, R5893 (1998).

    Article  Google Scholar 

  17. N. Liu, M. Becton, L. Zhang, H. Chen, X. Zeng, R. Pidaparti, and X. Wang, Phys. Chem. Chem. Phys. 21, 1884 (2019).

    Article  Google Scholar 

  18. S. Cranford, D. Sen, and M.J. Buehler, Appl. Phys. Lett. 95, 123121 (2009).

    Article  Google Scholar 

  19. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  Google Scholar 

  20. A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article  Google Scholar 

  21. V.S. Deshpande, N.A. Fleck, and M.F. Ashby, J. Mech. Phys. Solids 49, 1747 (2001).

    Article  Google Scholar 

  22. N. Winter, M. Becton, L. Zhang, and X. Wang, Acta Mater. 124, 127 (2017).

    Article  Google Scholar 

  23. L.C. Montemayor and J.R. Greer, J. Appl. Mech. 82, 071012 (2015).

    Article  Google Scholar 

  24. N.A. Fleck, V.S. Deshpande, and M.F. Ashby, Proc. R. Soc. A: Math. Phys. Eng. Sci. 466, 2495 (2010).

    Article  Google Scholar 

  25. T.A. Schaedler, A.J. Jacobsen, A. Torrents, A.E. Sorensen, J. Lian, J.R. Greer, L. Valdevit, and W.B. Carter, Science 334, 962 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianqiao Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 7928 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Liu, N., Becton, M. et al. Mechanics of 2D Materials-Based Cellular Kirigami Structures: A Computational Study. JOM 72, 4706–4717 (2020). https://doi.org/10.1007/s11837-020-04429-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04429-5

Navigation